-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdeep_sort.py
executable file
·145 lines (125 loc) · 6.51 KB
/
deep_sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import numpy as np
from deep.feature_extractor import Extractor
from sort.nn_matching import NearestNeighborDistanceMetric
from sort.preprocessing import non_max_suppression
from sort.detection import Detection
from sort.tracker import Tracker
import cv2
import time
from collections import deque
# 记住历史中心点,用作画轨迹 maxlen轨迹线长度
# 序号就是 对应的跟踪id号 points=[[跟踪id对应的双向队列],.....] 包裹队列的列表
points = [deque(maxlen=5) for _ in range(5400)]
# points = [ 某跟踪识别号的deque([(1193, 203),(1192, 203),(1190, 203),maxlen=10), ....]
class DeepSort(object):
def __init__(self, model_path):
# 检测结果阈值。低于这个阈值的检测结果将会被忽略 # 过滤掉置信度小于self.min_confidence的bbox,生成detections
self.min_confidence = 0.25
self.nms_max_overlap = 1.0 # 非极大抑制的阈值 原始值1.0
# NMS (这里self.nms_max_overlap的值为1,即保留了所有的detections)
self.extractor = Extractor(model_path, use_cuda=True)
max_cosine_distance = 0.2 # 0.2 余弦距离的控制阈值 调节这个能改善IDsw
# 描述的区域的最大值 它是一个列表,列出了每次出现曲目的特征。nn_bodget确定此列表的大小。例如,如果它是10,则仅存储曲目在板上出现的最后10次的特征
nn_budget = 100
metric = NearestNeighborDistanceMetric(
"cosine", max_cosine_distance, nn_budget)
self.tracker = Tracker(metric)
def update(self, bbox_xywh, confidences, class_num, ori_img):
self.height, self.width = ori_img.shape[:2]
# generate detections
detections = []
try:
features = self._get_features(bbox_xywh, ori_img)
for i, conf in enumerate(confidences):
if conf >= self.min_confidence and features.any():
# Detection 在detection.py找到相关的类
detections.append(
Detection(bbox_xywh[i], conf, class_num[i], features[i]))
else:
pass
except Exception as ex:
# TODO Error: OpenCV(4.1.1) /io/opencv/modules/imgproc/src/resize.cpp:3720: error: (-215:Assertion failed) !ssize.empty() in function 'resize'
print("{} Error: {}".format(time.strftime(
"%H:%M:%S", time.localtime()), ex))
# print('Error or video finish ')
# run on non-maximum supression
boxes = np.array([d.tlwh for d in detections])
scores = np.array([d.confidence for d in detections])
indices = non_max_suppression(
boxes, self.nms_max_overlap, scores) # indices = [0] 或者 [0,1]
detections = [detections[i]
for i in indices] # 根据编号 做 嵌套的list[ [0编号],[1编号] ]
# print(detections[0].confidence)
# confidence: 0.5057685971260071
# print(detections)
# [bbox_xywh: [1508.47619629 483.33926392 34.95910645 77.69906616],
# confidence: 0.5140249729156494,
# bbox_xywh: [1678.99377441 526.4251709 36.55554199 80.11364746],
# confidence: 0.5057685971260071]
# update tracker
self.tracker.predict()
# 现在输入的detections 是 做了嵌套编号的 list[ [0编号],[1编号] ]
self.tracker.update(detections)
# print("confidence {}".format(detections[0].confidence))
# output bbox identities
# tracks 存储相关信息
outputs = []
# tracker的属性 trackers储存着 很多个track类实例
for track in self.tracker.tracks:
if not track.is_confirmed() or track.time_since_update > 1:
continue
box = track.to_tlwh() # (top left x, top left y, width, height) 每帧都刷新
x1, y1, x2, y2 = self._xywh_to_xyxy_centernet(
box) # xywh 转成 矩形的对角点坐标
# 画运动轨迹
# 轨迹为检测框中心
center = (int((x1+x2)/2),int((y1+y2)/2))#画轨迹图 记录每一次的中心点
# 轨迹为检测框底部
# center = (int((x1+x2)/2), int((y2))) # 画轨迹图 记录每一次的底部
points[track.track_id].append(center) # 用队列先进先出的结构 记录运动中心轨迹
# print(points[1][-1]) # 查看跟踪号为1的对象的中心点存储记忆
# for j in range(1, len(points[track.track_id])):
# if points[track.track_id][j - 1] is None or points[track.track_id][j] is None:
# continue
# # thickness = int(np.sqrt(32 / float(j + 1)) * 2) #第一个点重 后续线逐渐变细
# cv2.line(ori_img,(points[track.track_id][j-1]), (points[track.track_id][j]),(8,196,255),thickness = 3,lineType=cv2.LINE_AA)
track_id = track.track_id
confidences = track.confidence * 100
cls_num = track.class_num
# print("track_id {} confidences {}".format(track_id,confidences))
outputs.append(
np.array([x1, y1, x2, y2, track_id, confidences, cls_num], dtype=np.int))
if len(outputs) > 0:
outputs = np.stack(outputs, axis=0)
return outputs, points
# for centernet (x1,x2 w,h -> x1,y1,x2,y2)
def _xywh_to_xyxy_centernet(self, bbox_xywh):
x1, y1, w, h = bbox_xywh
x1 = max(x1, 0)
y1 = max(y1, 0)
x2 = min(int(x1+w), self.width-1)
y2 = min(int(y1+h), self.height-1)
return int(x1), int(y1), x2, y2
# for yolo (centerx,centerx, w,h -> x1,y1,x2,y2)
def _xywh_to_xyxy_yolo(self, bbox_xywh):
x, y, w, h = bbox_xywh
x1 = max(int(x-w/2), 0)
x2 = min(int(x+w/2), self.width-1)
y1 = max(int(y-h/2), 0)
y2 = min(int(y+h/2), self.height-1)
return x1, y1, x2, y2
def _get_features(self, bbox_xywh, ori_img):
# TODO
features = []
for box in bbox_xywh:
x1, y1, x2, y2 = self._xywh_to_xyxy_centernet(box)
im = ori_img[y1:y2, x1:x2]
feature = self.extractor(im)[0]
features.append(feature)
if len(features):
features = np.stack(features, axis=0)
else:
features = np.array([])
return features
if __name__ == '__main__':
pass