-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmemory.py
147 lines (124 loc) · 6.1 KB
/
memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import logging
import os
import numpy as np
import tensorflow as tf
from tensorflow.contrib import layers
from utils import getLogger
# set logger
logger = getLogger('Deep-IRT-model')
class MemoryHeadGroup():
def __init__(self, memory_size, memory_state_dim, is_write, name="DKVMN-Head"):
self.name = name
self.memory_size = memory_size
self.memory_state_dim = memory_state_dim
self.is_write = is_write
def correlation_weight(self, embedded_query_vector, key_memory_matrix):
"""
Given a batch of queries, calculate the similarity between the query and
each key-memory slot via inner dot product. Then, calculate the weighting
of each memory slot by softmax function.
Parameters:
- embedded_query_vector (k): Shape (batch_size, key_memory_state_dim)
- key_memory_matrix (D_k): Shape (memory_size, key_memory_state_dim)
Result:
- correlation_weight (w): Shape (batch_size, memory_size)
"""
embedding_result = tf.matmul(
embedded_query_vector, tf.transpose(key_memory_matrix)
)
correlation_weight = tf.nn.softmax(embedding_result)
return correlation_weight
def read(self, value_memory_matrix, correlation_weight):
"""
Given the correlation_weight, read the value-memory in each memory slot
by weighted sum. This operation is assumpted to be done in batch manner.
Parameters:
- value_memory_matrix (D_v): Shape (batch_size, memory_size, value_memory_state_dim)
- correlation_weight (w): Shape (batch_size, memory_size)
Result:
- read_result (r): Shape (batch_size, value_memory_state_dim)
"""
value_memory_matrix_reshaped = tf.reshape(value_memory_matrix, [-1, self.memory_state_dim])
correlation_weight_reshaped = tf.reshape(correlation_weight, [-1,1])
_read_result = tf.multiply(value_memory_matrix_reshaped, correlation_weight_reshaped) # row-wise multiplication
read_result = tf.reshape(_read_result, [-1, self.memory_size, self.memory_state_dim])
read_result = tf.reduce_sum(read_result, axis=1, keepdims=False)
return read_result
def write(self, value_memory_matrix, correlation_weight, embedded_content_vector, reuse=False):
"""
Update the value_memory_matrix based on the correlation weight and embedded result vector.
Parameters:
- value_memory_matrix (D_v): Shape (batch_size, memory_size, value_memory_state_dim)
- correlation_weight (w): Shape (batch_size, memory_size)
- embedded_content_vector (v): Shape (batch_size, value_memory_state_dim)
- reuse: indicate whether the weight should be reuse during training.
Return:
- new_value_memory_matrix: Shape (batch_size, memory_size, value_memory_state_dim)
"""
assert self.is_write
# erase_vector/erase_signal: Shape (batch_size, value_memory_state_dim)
erase_signal = layers.fully_connected(
inputs=embedded_content_vector,
num_outputs=self.memory_state_dim,
scope=self.name+'/EraseOperation',
reuse=reuse,
activation_fn=tf.sigmoid
)
# add_vector/add_signal: Shape (batch_size, value_memory_state_dim)
add_signal = layers.fully_connected(
inputs=embedded_content_vector,
num_outputs=self.memory_state_dim,
scope=self.name+'/AddOperation',
reuse=reuse,
activation_fn=tf.tanh
)
# reshape from (batch_size, value_memory_state_dim) to (batch_size, 1, value_memory_state_dim)
erase_reshaped = tf.reshape(erase_signal, [-1,1,self.memory_state_dim])
# reshape from (batch_size, value_memory_state_dim) to (batch_size, 1, value_memory_state_dim)
add_reshaped = tf.reshape(add_signal, [-1,1,self.memory_state_dim])
# reshape from (batch_size, memory_size) to (batch_size, memory_size, 1)
cw_reshaped = tf.reshape(correlation_weight, [-1, self.memory_size, 1])
# erase_mul/add_mul: Shape (batch_size, memory_size, value_memory_state_dim)
erase_mul = tf.multiply(erase_reshaped, cw_reshaped)
add_mul = tf.multiply(add_reshaped, cw_reshaped)
# Update value memory
new_value_memory_matrix = value_memory_matrix * (1 - erase_mul) # erase memory
new_value_memory_matrix += add_mul
return new_value_memory_matrix
class DKVMN():
def __init__(self, memory_size, key_memory_state_dim, value_memory_state_dim,
init_key_memory=None, init_value_memory=None, name="DKVMN"):
self.name = name
self.memory_size = memory_size
self.key_memory_state_dim = key_memory_state_dim
self.value_memory_state_dim = value_memory_state_dim
self.key_head = MemoryHeadGroup(
self.memory_size, self.key_memory_state_dim,
name=self.name+'-KeyHead', is_write=False
)
self.value_head = MemoryHeadGroup(
self.memory_size, self.value_memory_state_dim,
name=self.name+'-ValueHead', is_write=True
)
self.key_memory_matrix = init_key_memory
self.value_memory_matrix = init_value_memory
def attention(self, embedded_query_vector):
correlation_weight = self.key_head.correlation_weight(
embedded_query_vector=embedded_query_vector,
key_memory_matrix=self.key_memory_matrix
)
return correlation_weight
def read(self, correlation_weight):
read_content = self.value_head.read(
value_memory_matrix=self.value_memory_matrix,
correlation_weight=correlation_weight
)
return read_content
def write(self, correlation_weight, embedded_result_vector, reuse):
self.value_memory_matrix = self.value_head.write(
value_memory_matrix=self.value_memory_matrix,
correlation_weight=correlation_weight,
embedded_content_vector=embedded_result_vector,
reuse=reuse
)
return self.value_memory_matrix