-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathloader.py
164 lines (146 loc) · 6.39 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0)
import torch
import gguf
from .ops import GGMLTensor
from .dequant import is_quantized
IMG_ARCH_LIST = {"flux", "sd1", "sdxl", "sd3", "aura", "ltxv", "hyvid"}
TXT_ARCH_LIST = {"t5", "t5encoder", "llama"}
def get_orig_shape(reader, tensor_name):
field_key = f"comfy.gguf.orig_shape.{tensor_name}"
field = reader.get_field(field_key)
if field is None:
return None
# Has original shape metadata, so we try to decode it.
if len(field.types) != 2 or field.types[0] != gguf.GGUFValueType.ARRAY or field.types[1] != gguf.GGUFValueType.INT32:
raise TypeError(f"Bad original shape metadata for {field_key}: Expected ARRAY of INT32, got {field.types}")
return torch.Size(tuple(int(field.parts[part_idx][0]) for part_idx in field.data))
def gguf_sd_loader(path, handle_prefix="model.diffusion_model.", return_arch=False):
"""
Read state dict as fake tensors
"""
reader = gguf.GGUFReader(path)
# filter and strip prefix
has_prefix = False
if handle_prefix is not None:
prefix_len = len(handle_prefix)
tensor_names = set(tensor.name for tensor in reader.tensors)
has_prefix = any(s.startswith(handle_prefix) for s in tensor_names)
tensors = []
for tensor in reader.tensors:
sd_key = tensor_name = tensor.name
if has_prefix:
if not tensor_name.startswith(handle_prefix):
continue
sd_key = tensor_name[prefix_len:]
tensors.append((sd_key, tensor))
# detect and verify architecture
compat = None
arch_str = None
arch_field = reader.get_field("general.architecture")
if arch_field is not None:
if len(arch_field.types) != 1 or arch_field.types[0] != gguf.GGUFValueType.STRING:
raise TypeError(f"Bad type for GGUF general.architecture key: expected string, got {arch_field.types!r}")
arch_str = str(arch_field.parts[arch_field.data[-1]], encoding="utf-8")
if arch_str not in IMG_ARCH_LIST and arch_str not in TXT_ARCH_LIST:
raise ValueError(f"Unexpected architecture type in GGUF file, expected one of flux, sd1, sdxl, t5encoder but got {arch_str!r}")
else: # stable-diffusion.cpp
# import here to avoid changes to convert.py breaking regular models
from .tools.convert import detect_arch
arch_str = detect_arch(set(val[0] for val in tensors)).arch
compat = "sd.cpp"
# main loading loop
state_dict = {}
qtype_dict = {}
for sd_key, tensor in tensors:
tensor_name = tensor.name
tensor_type_str = str(tensor.tensor_type)
torch_tensor = torch.from_numpy(tensor.data) # mmap
shape = get_orig_shape(reader, tensor_name)
if shape is None:
shape = torch.Size(tuple(int(v) for v in reversed(tensor.shape)))
# Workaround for stable-diffusion.cpp SDXL detection.
if compat == "sd.cpp" and arch_str == "sdxl":
if any([tensor_name.endswith(x) for x in (".proj_in.weight", ".proj_out.weight")]):
while len(shape) > 2 and shape[-1] == 1:
shape = shape[:-1]
# add to state dict
if tensor.tensor_type in {gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16}:
torch_tensor = torch_tensor.view(*shape)
state_dict[sd_key] = GGMLTensor(torch_tensor, tensor_type=tensor.tensor_type, tensor_shape=shape)
qtype_dict[tensor_type_str] = qtype_dict.get(tensor_type_str, 0) + 1
# mark largest tensor for vram estimation
qsd = {k:v for k,v in state_dict.items() if is_quantized(v)}
if len(qsd) > 0:
max_key = max(qsd.keys(), key=lambda k: qsd[k].numel())
state_dict[max_key].is_largest_weight = True
# sanity check debug print
print("\nggml_sd_loader:")
for k,v in qtype_dict.items():
print(f" {k:30}{v:3}")
if return_arch:
return (state_dict, arch_str)
return state_dict
# for remapping llama.cpp -> original key names
T5_SD_MAP = {
"enc.": "encoder.",
".blk.": ".block.",
"token_embd": "shared",
"output_norm": "final_layer_norm",
"attn_q": "layer.0.SelfAttention.q",
"attn_k": "layer.0.SelfAttention.k",
"attn_v": "layer.0.SelfAttention.v",
"attn_o": "layer.0.SelfAttention.o",
"attn_norm": "layer.0.layer_norm",
"attn_rel_b": "layer.0.SelfAttention.relative_attention_bias",
"ffn_up": "layer.1.DenseReluDense.wi_1",
"ffn_down": "layer.1.DenseReluDense.wo",
"ffn_gate": "layer.1.DenseReluDense.wi_0",
"ffn_norm": "layer.1.layer_norm",
}
LLAMA_SD_MAP = {
"blk.": "model.layers.",
"attn_norm": "input_layernorm",
"attn_q": "self_attn.q_proj",
"attn_k": "self_attn.k_proj",
"attn_v": "self_attn.v_proj",
"attn_output": "self_attn.o_proj",
"ffn_up": "mlp.up_proj",
"ffn_down": "mlp.down_proj",
"ffn_gate": "mlp.gate_proj",
"ffn_norm": "post_attention_layernorm",
"token_embd": "model.embed_tokens",
"output_norm": "model.norm",
"output.weight": "lm_head.weight",
}
def sd_map_replace(raw_sd, key_map):
sd = {}
for k,v in raw_sd.items():
for s,d in key_map.items():
k = k.replace(s,d)
sd[k] = v
return sd
def llama_permute(raw_sd, n_head, n_head_kv):
# Reverse version of LlamaModel.permute in llama.cpp convert script
sd = {}
permute = lambda x,h: x.reshape(h, x.shape[0] // h // 2, 2, *x.shape[1:]).swapaxes(1, 2).reshape(x.shape)
for k,v in raw_sd.items():
if k.endswith(("q_proj.weight", "q_proj.bias")):
v.data = permute(v.data, n_head)
if k.endswith(("k_proj.weight", "k_proj.bias")):
v.data = permute(v.data, n_head_kv)
sd[k] = v
return sd
def gguf_clip_loader(path):
sd, arch = gguf_sd_loader(path, return_arch=True)
if arch in {"t5", "t5encoder"}:
sd = sd_map_replace(sd, T5_SD_MAP)
elif arch in {"llama"}:
temb_key = "token_embd.weight"
if temb_key in sd and sd[temb_key].shape != (128320, 4096):
# This still works. Raise error?
print("Warning! token_embd shape may be incorrect for llama 3 model!")
sd = sd_map_replace(sd, LLAMA_SD_MAP)
sd = llama_permute(sd, 32, 8) # L3
else:
pass
return sd