-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
337 lines (249 loc) · 13.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import pprint
import urllib
from pathlib import Path
import requests
import pandas as pd
from typing import Union, List
import json
import re
from storage import LastUpdatedStorage, LineageTreeStorage, NextCladeLineagesStorage
class Lineage:
tree = dict()
children_tree = dict()
parent_tree = dict()
roots = list()
def __init__(self, designation_date: str, pango: str, partial: str, unaliased: str):
self.designation_date = designation_date
self.pango = pango
self.partial = partial
self.unaliased = unaliased
self.parent = Lineage.get_parent(unaliased)
def __repr__(self):
return f'Lineage(PARENT={self.parent}, DATE={self.designation_date}, PANGO={self.pango}, PARTIAL={self.partial}, UNALIASED={self.unaliased}) '
@classmethod
def get_parent(cls, lineage: str) -> Union[str, None]:
if "." in lineage and not lineage == 'B.1.1.529':
return ".".join(lineage.split(".")[:-1])
return None
@classmethod
def get_parents_list(cls, lineage: str) -> List[str]:
parents = list()
while lineage is not None:
parents.append(lineage)
lineage = Lineage.get_parent(lineage)
return parents
@classmethod
def add_to_tree(cls, lineage: "Lineage"):
id = lineage.unaliased
parent = lineage.parent
parents = Lineage.get_parents_list(parent)
node = {
"id": id,
"lineage": {
"pango": lineage.pango,
"partial": lineage.partial,
"unaliased": lineage.unaliased,
"designation_date": lineage.designation_date
},
"height": len(parents) if parents else 0,
"parent": {
"line_of_descent": parents if parents else None,
"root": parents[-1] if parents else lineage.partial
},
"children": []
}
cls.parent_tree[id] = parents
cls.children_tree[id] = node
if lineage.parent is None or lineage.pango == 'B.1.1.529':
# No children to add
cls.tree.update(node)
cls.roots.append(id)
elif parent in cls.children_tree or parent == 'BA':
cls.children_tree[parent]["children"].append(node)
@classmethod
def get_tree(cls, *, roots=None):
tree: dict = {
"root": {
"id": "omicron",
"lineage": {
"pango": "omicron",
"partial": "omicron",
"unaliased": "omicron",
"designation_date": None
},
"height": None,
"parent": {
"line_of_descent": None,
"root": None
},
"children": []
}
}
roots = cls.roots if roots is None else roots # Default or user-defined root
if len(roots) == 1:
return cls.children_tree.get(roots[0])
for root in roots:
branch = cls.children_tree.get(root)
tree["root"]["children"].append(branch)
return tree
def clean(lineages):
if isinstance(lineages, str):
return lineages.replace("*", "")
else:
return [lineage.replace("*", "") for lineage in lineages]
def decompress(lineages):
if '.' not in lineages:
return lineages
alias, rest = lineages.split('.', maxsplit=1)
unaliased_pango_lineage = alias_keys.get(alias, alias)
return f'{unaliased_pango_lineage}.{rest}'
def contains(lineage, value):
if 'X' in lineage:
alias = lineage.split('.', maxsplit=1)[0]
for lineage in all_alias_keys.get(alias, alias):
if value in decompress(lineage):
return True
return False
return value in lineage
def extract_pango_values(node):
# Create an empty list to store PANGO values
pango_values = []
# Check if the current node has a "Nextclade_pango" attribute
if "Nextclade_pango" in node["node_attrs"]:
# Extract the PANGO value and add it to the list
pango_values.append(node["node_attrs"]["Nextclade_pango"]["value"])
# Check if the current node has any children
if "children" in node:
# Recursively call the function for each child node and extend the list with the returned values
for child in node["children"]:
pango_values.extend(extract_pango_values(child))
return pango_values
if __name__ == "__main__":
# pd.set_option('display.max_columns', None)
# pd.set_option('display.width', 200)
# pd.set_option('display.max_colwidth', 200)
# pd.set_option('display.max_rows', None)
Path("files/nextclade").mkdir(parents=True, exist_ok=True)
last_updated_file = LastUpdatedStorage("files/nextclade/last_updated.csv")
lineage_tree_file = LineageTreeStorage("files/tree.json")
nextClade_lineages_file = NextCladeLineagesStorage("files/nextclade/available_lineages.txt")
# url = "https://docs.google.com/spreadsheets/d/e/2PACX-1vRcJqvDKlzyT7uNVe4IjuksUoQ3vIIUKJpOnLzYuAxf3cl2Ssp02MedPiBnHUaPfwP24iYSj5a0DHCT/pub?gid=397158123&single=true&output=csv"
designation_dates_url = "https://raw.githubusercontent.com/ciscorucinski/pango-designation-dates/main/data/lineage_designation_date.csv"
alias_keys_url = "https://raw.githubusercontent.com/cov-lineages/pango-designation/master/pango_designation/alias_key.json"
lineage_notes_url = "https://raw.githubusercontent.com/cov-lineages/pango-designation/master/lineage_notes.txt"
nextclade_mn908947_versions_url = "https://github.com/nextstrain/nextclade_data/tree/master/data/datasets/sars-cov-2/references/MN908947/versions"
designation_dates_df = pd.read_csv(designation_dates_url, sep=",", parse_dates=['designation_date'], date_format='mixed')
designation_dates_df.dropna(axis='rows', how='any', subset=['designation_date'], inplace=True)
designation_dates_df['designation_date'] = pd.to_datetime(designation_dates_df['designation_date'], errors='coerce',
utc=True)
designation_dates_df.rename(columns={"lineage": "pango_lineage"}, inplace=True)
with urllib.request.urlopen(alias_keys_url) as response:
alias_keys_json = json.loads(response.read().decode())
all_alias_keys = {key: clean(value) for key, value in alias_keys_json.items() if value != ""}
alias_keys = {key: clean(value) for key, value in alias_keys_json.items() if value != "" and isinstance(value, str)}
recombinant_keys = {key: clean(value) for key, value in alias_keys_json.items() if isinstance(value, list)}
column_order_dataframe = ['alias', 'pango_lineage', 'unaliased_pango_lineage', 'omicron']
column_order_lineage_notes_dataframe = ['pango_lineage', 'partial_pango_lineage', 'unaliased_pango_lineage',
'designation_date', 'omicron']
# Alias Keys
alias_keys_df = pd.DataFrame({k: v for k, v in alias_keys.items() if isinstance(v, str)}.items(),
columns=['alias', 'unaliased_pango_lineage'])
alias_keys_df['partial_pango_lineage'] = alias_keys_df['unaliased_pango_lineage'].apply(
lambda lineage: lineage.replace('B.1.1.529', 'BA'))
alias_keys_df['omicron'] = alias_keys_df['unaliased_pango_lineage'].apply(
lambda lineage: contains(lineage, 'B.1.1.529'))
alias_keys_df = alias_keys_df.reindex(
columns=['alias', 'partial_pango_lineage', 'unaliased_pango_lineage', 'omicron'])
# Recombinant Alias Keys
recombinant_lineages = {k: ", ".join(v) for k, v in recombinant_keys.items() if not isinstance(v, str)}
recombinant_alias_keys_df = pd.DataFrame([(alias, lineages) for alias, lineages in recombinant_lineages.items()],
columns=['alias', 'pango_lineage'])
recombinant_alias_keys_df['unaliased_pango_lineage'] = recombinant_alias_keys_df['pango_lineage'].apply(
lambda lineages: ', '.join([decompress(lineage) for lineage in set(lineages.split(', '))]))
recombinant_alias_keys_df['omicron'] = recombinant_alias_keys_df['unaliased_pango_lineage'].apply(
lambda lineages: any([contains(lineage, 'B.1.1.529') for lineage in lineages.split(', ')]))
recombinant_alias_keys_df = recombinant_alias_keys_df.reindex(columns=column_order_dataframe)
lineage_notes_df = pd.read_csv(lineage_notes_url, delimiter='\t', on_bad_lines='warn')
regex = r"^Alias of\s([^\s|,]*)"
regex_withdrawn = r"^Withdrawn:[\w\s.-]+Alias of\s([^\s|,]*)"
regex_recombinant = r"^(X[A-Z0-9.]+)"
lineage_notes_df.rename(columns={'Lineage': 'pango_lineage'}, inplace=True)
withdrawn_lineage_notes_df = lineage_notes_df.copy()
recombinant_lineage_notes_df = lineage_notes_df.copy()
lineage_notes_df['unaliased_pango_lineage'] = lineage_notes_df.apply(
lambda row: match.group(1) if (match := re.search(regex, row['Description'])) else row[
'pango_lineage'] if contains(row['pango_lineage'], 'B.1.1.529') else decompress(row['pango_lineage']),
axis=1
)
lineage_notes_df['omicron'] = lineage_notes_df['unaliased_pango_lineage'].apply(
lambda lineage: contains(lineage, 'B.1.1.529'))
lineage_notes_df['partial_pango_lineage'] = lineage_notes_df['unaliased_pango_lineage'].apply(
lambda lineage: lineage.replace('B.1.1.529.', 'BA.') if lineage else None)
lineage_notes_df.drop('Description', axis=1, inplace=True)
recombinant_lineage_notes_df['unaliased_pango_lineage'] = recombinant_lineage_notes_df['pango_lineage'].apply(
lambda lineage: match.group(1) if (match := re.search(regex_recombinant, lineage)) else None)
recombinant_lineage_notes_df.dropna(subset=['unaliased_pango_lineage'], inplace=True)
recombinant_lineage_notes_df.drop('Description', axis=1, inplace=True)
recombinant_lineage_notes_df['omicron'] = recombinant_lineage_notes_df['pango_lineage'].apply(
lambda lineage: contains(lineage, 'B.1.1.529'))
withdrawn_lineage_notes_df['unaliased_pango_lineage'] = withdrawn_lineage_notes_df['Description'].apply(
lambda description: match.group(1) if (match := re.search(regex_withdrawn, description)) else None)
withdrawn_lineage_notes_df.dropna(subset=['unaliased_pango_lineage'], inplace=True)
withdrawn_lineage_notes_df.drop('Description', axis=1, inplace=True)
withdrawn_lineage_notes_df['partial_pango_lineage'] = withdrawn_lineage_notes_df['unaliased_pango_lineage'].apply(
lambda lineage: lineage.replace('B.1.1.529.', 'BA.') if lineage else None)
withdrawn_lineage_notes_df['omicron'] = withdrawn_lineage_notes_df['unaliased_pango_lineage'].apply(
lambda lineage: contains(lineage, 'B.1.1.529'))
lineage_notes_df = lineage_notes_df.merge(designation_dates_df, on="pango_lineage")
lineage_notes_df = lineage_notes_df.reindex(columns=column_order_lineage_notes_dataframe)
for index, (pango, partial, unaliased, date, is_omicron) in lineage_notes_df.iterrows():
print(f"Analyzing Lineage: {pango} ... ", end='')
if not is_omicron:
print("(not processed)")
continue
date = date.strftime('%Y-%m-%d %H:%M:%S%z')
lineage = Lineage(date, pango, partial, unaliased)
Lineage.add_to_tree(lineage)
print(f"Added {lineage=}")
json_object = json.dumps(Lineage.get_tree(),
indent=4, sort_keys=False, ensure_ascii=False, separators=(',', ': '),
check_circular=False)
lineage_tree_file.write(json_object)
print()
print("Retrieving NextClade Data")
last_updated, last_retrieved_commit = last_updated_file.read()
response = requests.get("https://github.com/nextstrain/nextclade_data/blob/master/data/nextstrain/sars-cov-2/MN908947/tree.json")
payload = json.loads(response.content)['payload']
repo = payload['repo']
path = payload['path']
repository = f"{repo['ownerLogin']}/{repo['name']}"
branch = repo['defaultBranch']
latest_commit = payload['refInfo']['currentOid']
current_latest_tree_url = f"https://raw.githubusercontent.com/{repository}/{branch}/{path}"
print(f"Latest URL: {current_latest_tree_url}")
print()
omicron_pango_values = set()
if last_retrieved_commit == latest_commit:
print("No new data is available")
print(f"Url was already parsed: {last_updated}")
print()
print("Retrieving Omicron Lineages ... ", end="")
omicron_lineages = nextClade_lineages_file.read()
print("Done")
else:
last_updated_file.write(latest_commit)
print("New data available")
print("Loading new tree ... ", end="")
with urllib.request.urlopen(current_latest_tree_url) as response:
nextstrain_tree = json.loads(response.read().decode())
print("Done")
tree = nextstrain_tree["tree"]
print("Extracting Omicron Lineages ... ", end="")
all_pango_values = extract_pango_values(tree)
omicron_lineages = {lineage for lineage in all_pango_values if contains(decompress(lineage), "B.1.1.529")}
omicron_lineages = sorted(omicron_lineages)
nextClade_lineages_file.write(omicron_lineages)
print("Done")
print()
# Print the list of PANGO values
pprint.pprint(omicron_lineages)