-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathtrain_ilm.py
738 lines (650 loc) · 26.1 KB
/
train_ilm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
from enum import Enum
from collections import defaultdict
import multiprocessing
import os
import pickle
import random
import time
import warnings
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset)
from tqdm import tqdm
from transformers import GPT2Config, GPT2LMHeadModel, AdamW, CONFIG_NAME, WEIGHTS_NAME
try:
import wandb
except:
pass
import ilm.constants
import ilm.mask
import ilm.mask.util
import ilm.tokenize_util
class Task(Enum):
# Example: She ate <?> for <?><S>cereal<E>breakfast<E>
ILM = 0
# Example: <S>cereal<E>breakfast<E>
NO_CONTEXT_ILM = 1
# Example: She ate <?> for <?><S>She ate cereal for breakfast<E>
NAIVE = 2
# Example: <S>She ate cereal for breakfast<E>
LM = 3
# Example: <S>breakfast for cereal ate She<E>
REVERSE_LM = 4
# TODO: NAIVE with no stopwords?
class TargetType(Enum):
PAD = 0
CONTEXT = 1
CONTEXT_SPECIAL = 2
CONTEXT_INFILL_SEP = 3
INFILL = 4
INFILL_SPECIAL = 5
INFILL_REDUNDANT = 6
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# NOTE: Multiprocessing pickle/closure issue workaround
_GLOBAL_WORKER_TARGET = None
def _worker_target(doc):
return _GLOBAL_WORKER_TARGET(doc)
def worker_target_factory(
tokenizer,
start_infill_id,
end_infill_id,
mask_type_to_id,
sequence_length,
task,
skip_naive_incomplete):
def fn(doc_and_char_masks):
doc, char_masks = doc_and_char_masks
try:
return doc_and_char_masks_to_input_and_tt(
doc,
char_masks,
tokenizer,
start_infill_id,
end_infill_id,
mask_type_to_id,
task,
sequence_length,
skip_naive_incomplete)
except Exception as e:
print(e)
return None
return fn
def doc_and_char_masks_to_input_and_tt(
doc,
char_masks,
tokenizer,
start_infill_id,
end_infill_id,
mask_type_to_id,
task,
sequence_length,
skip_naive_incomplete):
# Tokenize document
try:
doc_tokens = ilm.tokenize_util.tokenize(doc, tokenizer=tokenizer)
doc_tokens_ids = ilm.tokenize_util.tokens_to_ids(doc_tokens, tokenizer=tokenizer)
except:
doc_tokens = None
#error_to_count['Failed to tokenize document'] += len(char_masks)
# Align character masks to tokens
tok_masks = []
if doc_tokens is not None:
for char_mask in char_masks:
try:
tok_mask = ilm.mask.util.align_char_mask_to_tokens(doc, doc_tokens, char_mask)
except:
#error_to_count['Failed to align character-level mask to tokens'] += 1
continue
tok_masks.append(tok_mask)
# Apply masks
contexts_and_answers = []
for tok_mask in tok_masks:
try:
ca = ilm.mask.util.apply_masked_spans(
doc_tokens_ids,
tok_mask,
mask_type_to_id)
except:
#error_to_count['Failed to apply mask'] += 1
continue
contexts_and_answers.append((tok_mask, ca))
# Skip examples that would be incomplete for Task.NAIVE (typically the longest task)
if skip_naive_incomplete:
contexts_and_answers = [(m, (c, a)) for m, (c, a) in contexts_and_answers if (len(c) + 1 + len(doc_tokens_ids) + 1) <= sequence_length]
special_ids = set([start_infill_id, end_infill_id] + list(mask_type_to_id.values()))
inputs = np.zeros((len(contexts_and_answers), sequence_length), dtype=np.uint16)
tts = np.full((len(contexts_and_answers), sequence_length), TargetType.PAD.value, dtype=np.uint8)
for i, (mask, (context, answers)) in enumerate(contexts_and_answers):
# Create example
example = []
# (Masked) Context
if task in [Task.ILM, Task.NAIVE]:
# Example: She ate <?> for <?>
example += context
# Context / answer separator
context_len = len(example)
# Example: <S>
example += [start_infill_id]
# Answers
if task in [Task.ILM, Task.NO_CONTEXT_ILM]:
# Example: cereal<E>breakfast<E>
for mask_type, answer in answers:
example += answer
example += [end_infill_id]
elif task in [Task.NAIVE, Task.LM]:
# Example: She ate cereal for breakfast<E>
example += doc_tokens_ids
example += [end_infill_id]
elif task == Task.REVERSE_LM:
# Example: breakfast for cereal ate She<E>
example += doc_tokens_ids[::-1]
example += [end_infill_id]
else:
assert False
if len(example) > sequence_length:
example = example[:sequence_length]
#warning_to_count['Example longer than sequence length'] += 1
# Find special tokens
context_special_idxs = [l for l, t in enumerate(example) if l < context_len and t in special_ids]
infill_special_idxs = [l for l, t in enumerate(example) if l > context_len and t in special_ids]
# Store example in output array
if len(example) > 0 and (min(example) < np.iinfo(inputs.dtype).min or max(example) > np.iinfo(inputs.dtype).max):
raise ValueError('Example cannot be stored in numpy array')
inputs[i, :len(example)] = example
# Store target types in output array
tts[i, :context_len] = TargetType.CONTEXT.value
for l in context_special_idxs:
tts[i, l] = TargetType.CONTEXT_SPECIAL.value
tts[i, context_len:context_len+1] = TargetType.CONTEXT_INFILL_SEP.value
if task in [Task.NAIVE, Task.LM, Task.REVERSE_LM]:
tts[i, context_len+1:len(example)] = TargetType.INFILL_REDUNDANT.value
if task == Task.REVERSE_LM:
mask = mask[::-1]
for (_, tok_off, tok_len) in mask:
if task == Task.REVERSE_LM:
tok_off = (len(doc_tokens_ids) - 1) - (tok_off + tok_len - 1)
tts[i, context_len+1+tok_off:context_len+1+tok_off+tok_len] = TargetType.INFILL.value
tts[i, context_len+1+tok_off+tok_len:context_len+1+tok_off+tok_len+1] = TargetType.INFILL_SPECIAL.value
else:
tts[i, context_len+1:len(example)] = TargetType.INFILL.value
for l in infill_special_idxs:
tts[i, l] = TargetType.INFILL_SPECIAL.value
return inputs, tts
def masked_dataset_to_inputs_and_tts(
split,
tokenizer,
start_infill_id,
end_infill_id,
mask_type_to_id,
args):
assert split in ['train', 'eval']
if split == 'train':
examples_tag = args.train_examples_tag
sequence_length = args.train_sequence_length
max_num_examples = args.train_max_num_examples
skip_naive_incomplete = args.train_skip_naive_incomplete
else:
examples_tag = args.eval_examples_tag
sequence_length = args.eval_sequence_length
max_num_examples = args.eval_max_num_examples
skip_naive_incomplete = args.eval_skip_naive_incomplete
with open(os.path.join(args.examples_dir, '{}.pkl'.format(examples_tag)), 'rb') as f:
dataset = pickle.load(f)
num_docs = len(dataset)
# Mask and tokenize documents
global _GLOBAL_WORKER_TARGET
_GLOBAL_WORKER_TARGET = worker_target_factory(
tokenizer,
start_infill_id,
end_infill_id,
mask_type_to_id,
sequence_length,
Task[args.task.upper()],
skip_naive_incomplete)
with multiprocessing.Pool(args.data_loader_num_workers) as p:
docs_inputs_and_tts = list(tqdm(
p.imap(_worker_target, dataset),
total=len(dataset)))
inputs = np.concatenate([i for i, _ in docs_inputs_and_tts], axis=0)
tts = np.concatenate([t for _, t in docs_inputs_and_tts], axis=0)
# TODO: Don't bother doing all the work if we're not going to use it
if max_num_examples is not None:
set_random_seed(args.seed)
example_ids = random.sample(list(range(inputs.shape[0])), max_num_examples)
inputs = np.take(inputs, example_ids, axis=0)
tts = np.take(tts, example_ids, axis=0)
return inputs, tts, num_docs
def tts_to_labels(inputs, tts, label_tts):
selector = torch.zeros_like(inputs, dtype=torch.bool)
for tt in label_tts:
selector |= tts == tt.value
return torch.where(
selector,
inputs,
torch.full_like(inputs, -1))
def train(args):
# Init device
n_gpu = torch.cuda.device_count()
if n_gpu == 0:
warnings.warn('No GPU detected. Training on CPU will be very slow')
elif n_gpu > 1:
warnings.warn('This codebase is not optimized for multi GPU usage')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Lambda for filenames
example_tag_to_fp = lambda tag: os.path.join(args.examples_dir, '{}.pkl'.format(tag))
out_fn_to_fp = lambda fn: os.path.join(args.train_dir, fn)
# Create training dir
os.makedirs(args.train_dir, exist_ok=True)
resuming = os.path.exists(out_fn_to_fp('step.pkl'))
# Create tokenizer
tokenizer = ilm.tokenize_util.Tokenizer[args.tokenizer_name.upper()]
if tokenizer == ilm.tokenize_util.Tokenizer.CUSTOM:
ilm.tokenize_util.set_custom_vocab_fp(args.tokenizer_custom_vocab_fp)
# Update tokenizer
base_vocab_size = ilm.tokenize_util.vocab_size(tokenizer)
start_infill_id = base_vocab_size + 0
end_infill_id = base_vocab_size + 1
additional_ids_to_tokens = {
start_infill_id: '<|startofinfill|>',
end_infill_id: '<|endofinfill|>'
}
mask_cls = ilm.mask.util.mask_cls_str_to_type(args.mask_cls)
mask_types = mask_cls.mask_types()
mask_type_to_id = {}
for i, t in enumerate(mask_types):
t_id = base_vocab_size + 2 + i
t_tok = '<|infill_{}|>'.format(mask_cls.mask_type_serialize(t))
additional_ids_to_tokens[t_id] = t_tok
mask_type_to_id[t] = t_id
print(additional_ids_to_tokens)
vocab_size = ilm.tokenize_util.update_tokenizer(additional_ids_to_tokens, tokenizer)
with open(out_fn_to_fp('additional_ids_to_tokens.pkl'), 'wb') as f:
pickle.dump(additional_ids_to_tokens, f)
# Load training data
if not args.eval_only:
print('Loading training data')
loaded_from_cache = False
if args.data_cache:
try:
train_inputs = np.load(out_fn_to_fp('train_inp.npy'))
train_tts = np.load(out_fn_to_fp('train_tts.npy'))
with open(out_fn_to_fp('train_num_docs.pkl'), 'rb') as f:
train_num_docs = pickle.load(f)
loaded_from_cache = True
except:
pass
if not loaded_from_cache:
train_inputs, train_tts, train_num_docs = masked_dataset_to_inputs_and_tts(
'train',
tokenizer,
start_infill_id,
end_infill_id,
mask_type_to_id,
args)
if args.data_cache:
np.save(out_fn_to_fp('train_inp.npy'), train_inputs)
np.save(out_fn_to_fp('train_tts.npy'), train_tts)
with open(out_fn_to_fp('train_num_docs.pkl'), 'wb') as f:
pickle.dump(train_num_docs, f)
train_tt_to_count = {TargetType(k):v for k, v in zip(*np.unique(train_tts, return_counts=True))}
print(train_tt_to_count)
num_unmasked = train_tt_to_count.get(TargetType.CONTEXT, 0)
num_masked = train_tt_to_count.get(TargetType.INFILL, 0)
print('Mask rate (tokens): {:.4f}'.format(num_masked / (num_unmasked + num_masked)))
print('{} documents, {} examples'.format(train_num_docs, train_inputs.shape[0]))
print(train_inputs.shape, train_inputs.dtype, train_tts.shape, train_tts.dtype)
train_data = TensorDataset(
torch.from_numpy(train_inputs.astype(np.int64)),
torch.from_numpy(train_tts))
del train_inputs
del train_tts
# Load eval data
print('Loading eval data')
loaded_from_cache = False
if args.data_cache:
try:
eval_inputs = np.load(out_fn_to_fp('eval_inp.npy'))
eval_tts = np.load(out_fn_to_fp('eval_tts.npy'))
with open(out_fn_to_fp('eval_num_docs.pkl'), 'rb') as f:
eval_num_docs = pickle.load(f)
loaded_from_cache = True
except:
pass
if not loaded_from_cache:
eval_inputs, eval_tts, eval_num_docs = masked_dataset_to_inputs_and_tts(
'eval',
tokenizer,
start_infill_id,
end_infill_id,
mask_type_to_id,
args)
if args.data_cache:
np.save(out_fn_to_fp('eval_inp.npy'), eval_inputs)
np.save(out_fn_to_fp('eval_tts.npy'), eval_tts)
with open(out_fn_to_fp('eval_num_docs.pkl'), 'wb') as f:
pickle.dump(eval_num_docs, f)
eval_tt_to_count = {TargetType(k):v for k, v in zip(*np.unique(eval_tts, return_counts=True))}
print(eval_tt_to_count)
num_unmasked = eval_tt_to_count.get(TargetType.CONTEXT, 0)
num_masked = eval_tt_to_count.get(TargetType.INFILL, 0)
print('Mask rate (tokens): {:.4f}'.format(num_masked / (num_unmasked + num_masked)))
print('{} documents, {} examples'.format(eval_num_docs, eval_inputs.shape[0]))
print(eval_inputs.shape, eval_inputs.dtype, eval_tts.shape, eval_tts.dtype)
eval_data = TensorDataset(
torch.from_numpy(eval_inputs.astype(np.int64)),
torch.from_numpy(eval_tts))
del eval_inputs
del eval_tts
# Calculate number of steps to train for (return if we're just pre-cacheing data)
if args.train_num_epochs is not None:
train_num_batches = int(float(train_num_docs * args.train_num_epochs) / args.train_batch_size)
if train_num_batches == 0:
return
print('Maximum number of training steps: {}'.format(train_num_batches / args.train_batch_accumulation))
# Create data iterators
print('Creating datasets')
if not args.eval_only:
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size, drop_last=True)
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size, drop_last=True)
# Load model
print('Initializing model...')
set_random_seed(args.seed)
if args.model_name in ilm.constants.GPT2_MODEL_NAMES:
model_type = GPT2LMHeadModel
cfg_type = GPT2Config
if resuming:
print('from saved checkpoint (resuming)')
model = model_type.from_pretrained(args.train_dir)
else:
if args.train_from_scratch:
print('from scratch')
cfg = cfg_type.from_pretrained(args.model_name)
model = model_type(cfg)
else:
print('from pretrained checkpoint')
model = model_type.from_pretrained(args.model_name)
model.resize_token_embeddings(vocab_size)
model.to(device)
model.train()
# Reset random seed in case model init triggered RNG
# Initialize optimizers
if not args.eval_only:
params = list(model.named_parameters())
no_decay = ['bias', 'ln']
optimizer_grouped_parameters = [
{
'params': [p for n, p in params if not any(nd in n for nd in no_decay)],
'weight_decay': args.train_weight_decay
},
{
'params': [p for n, p in params if any(nd in n for nd in no_decay)],
'weight_decay': 0.0
}
]
optimizer = AdamW(
optimizer_grouped_parameters,
lr=args.train_learning_rate,
eps=args.train_adam_epsilon)
if resuming:
optimizer.load_state_dict(torch.load(out_fn_to_fp('optimizer.pt')))
# Create global step
if resuming:
try:
with open(out_fn_to_fp('step.pkl'), 'rb') as f:
step = pickle.load(f)
except Exception as e:
if args.eval_only:
step = None
else:
raise e
else:
step = 0
if args.eval_only:
print('Evaluating')
model.eval()
eval_start = time.time()
eval_token_counts = defaultdict(int)
eval_token_loss_sums = defaultdict(float)
for i, eval_batch in enumerate(eval_dataloader):
with torch.no_grad():
eval_inputs, eval_tts = tuple(t.to(device) for t in eval_batch)
eval_logits, _ = model(eval_inputs)
eval_logits_relevant = eval_logits[:, :-1].contiguous().view(-1, eval_logits.shape[-1])
for tag, tts in [
('context', [TargetType.CONTEXT]),
('infill', [TargetType.INFILL, TargetType.INFILL_SPECIAL]),
('infill_textonly', [TargetType.INFILL])]:
eval_labels = tts_to_labels(eval_inputs, eval_tts, tts)
eval_labels_relevant = eval_labels[:, 1:]
eval_labels_relevant_count = (eval_labels_relevant != -1).long().sum().item()
eval_labels_loss = F.cross_entropy(
eval_logits_relevant,
eval_labels_relevant.contiguous().view(-1),
ignore_index=-1).item()
eval_token_counts[tag] += eval_labels_relevant_count
eval_token_loss_sums[tag] += eval_labels_loss * eval_labels_relevant_count
eval_dict = {}
for tag, count in eval_token_counts.items():
loss = eval_token_loss_sums[tag]
if count > 0:
loss /= count
eval_dict['eval_{}_count'.format(tag)] = count
eval_dict['eval_{}_loss'.format(tag)] = loss
eval_dict['eval_{}_ppl'.format(tag)] = np.exp(loss)
eval_dict['eval_time'] = time.time() - eval_start
print('-' * 80)
if step is not None:
print('(Step {}) Eval'.format(step))
for k, v in eval_dict.items():
print('{}: {}'.format(k, v))
if args.wandb:
wandb.log(eval_dict, step=step)
else:
print('Training')
set_random_seed(args.seed)
best_eval_loss = None
num_save = -1
num_summary = -1
num_batches_complete = step * args.train_batch_accumulation
start = time.time()
while True:
if args.train_num_epochs is not None and num_batches_complete >= train_num_batches:
break
for batch in train_dataloader:
if args.train_num_epochs is not None and num_batches_complete >= train_num_batches:
break
elapsed = time.time() - start
# Evaluate
if int(elapsed / args.train_eval_secs) > num_save:
num_save = int(elapsed / args.train_eval_secs)
model.eval()
eval_start = time.time()
eval_token_counts = defaultdict(int)
eval_token_loss_sums = defaultdict(float)
for i, eval_batch in enumerate(eval_dataloader):
with torch.no_grad():
eval_inputs, eval_tts = tuple(t.to(device) for t in eval_batch)
eval_logits, _ = model(eval_inputs)
eval_logits_relevant = eval_logits[:, :-1].contiguous().view(-1, eval_logits.shape[-1])
for tag, tts in [
('context', [TargetType.CONTEXT]),
('infill', [TargetType.INFILL, TargetType.INFILL_SPECIAL]),
('infill_textonly', [TargetType.INFILL])]:
eval_labels = tts_to_labels(eval_inputs, eval_tts, tts)
eval_labels_relevant = eval_labels[:, 1:]
eval_labels_relevant_count = (eval_labels_relevant != -1).long().sum().item()
eval_labels_loss = F.cross_entropy(
eval_logits_relevant,
eval_labels_relevant.contiguous().view(-1),
ignore_index=-1).item()
eval_token_counts[tag] += eval_labels_relevant_count
eval_token_loss_sums[tag] += eval_labels_loss * eval_labels_relevant_count
eval_dict = {}
for tag, count in eval_token_counts.items():
loss = eval_token_loss_sums[tag]
if count > 0:
loss /= count
eval_dict['eval_{}_count'.format(tag)] = count
eval_dict['eval_{}_loss'.format(tag)] = loss
eval_dict['eval_time'] = time.time() - eval_start
print('-' * 80)
print('(Step {}) Eval'.format(step))
for k, v in eval_dict.items():
print('{}: {}'.format(k, v))
if args.wandb:
wandb.log(eval_dict, step=step)
if best_eval_loss is None or eval_dict['eval_infill_loss'] < best_eval_loss:
print('Saving')
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.config.to_json_file(out_fn_to_fp(CONFIG_NAME))
torch.save(model_to_save.state_dict(), out_fn_to_fp(WEIGHTS_NAME))
torch.save(optimizer.state_dict(), out_fn_to_fp('optimizer.pt'))
with open(out_fn_to_fp('step.pkl'), 'wb') as f:
pickle.dump(step, f)
best_eval_loss = eval_dict['eval_infill_loss']
model.train()
# Train
inputs, tts = tuple(t.to(device) for t in batch)
# TODO: Option to train on CONTEXT_SPECIAL?
labels_context = tts_to_labels(inputs, tts, [TargetType.CONTEXT])
# TODO: Option to skip training on INFILL_REDUNDANT?
# NOTE: This would give Task.NAIVE/Task.LM less supervision overall but put them more in line with the supervision that Task.ILM and Task.NO_CONTEXT_ILM receive
labels_infill = tts_to_labels(inputs, tts, [TargetType.INFILL, TargetType.INFILL_SPECIAL, TargetType.INFILL_REDUNDANT])
logits, _ = model(inputs)
logits_relevant = logits[:, :-1].contiguous().view(-1, logits.shape[-1])
loss_context = F.cross_entropy(
logits_relevant,
labels_context[:, 1:].contiguous().view(-1),
ignore_index=-1)
loss_infill = F.cross_entropy(
logits_relevant,
labels_infill[:, 1:].contiguous().view(-1),
ignore_index=-1)
loss_context_item = loss_context.item()
loss_infill_item = loss_infill.item()
loss = loss_infill
if args.train_context:
loss += loss_context
if args.train_batch_accumulation != 1:
loss /= float(args.train_batch_accumulation)
loss.backward()
# Summarize
if int(elapsed / args.train_summary_secs) > num_summary:
num_summary = int(elapsed / args.train_summary_secs)
print('-' * 80)
print('(Step {}) Summary'.format(step))
print(loss_context_item)
print(loss_infill_item)
with torch.no_grad():
for t in inputs, labels_context, labels_infill:
t0 = list(t[0].cpu().numpy())
print('-' * 40)
print(t0)
for t in inputs, labels_context, labels_infill:
t0 = list(t[0].cpu().numpy())
print('-' * 40)
print(ilm.tokenize_util.decode([0 if t == -1 else t for t in t0], tokenizer))
if args.wandb:
wandb.log({
'loss_context': loss_context_item,
'loss_infill': loss_infill_item,
}, step=step)
if ((num_batches_complete + 1) % args.train_batch_accumulation) == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.train_max_grad_norm)
optimizer.step()
optimizer.zero_grad()
step += 1
num_batches_complete += 1
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('experiment_name', type=str)
parser.add_argument('train_dir', type=str)
parser.add_argument('examples_dir', type=str)
parser.add_argument('--seed', type=int)
parser.add_argument('--wandb', action='store_true', dest='wandb')
parser.add_argument('--wandb_project_name', type=str)
mask_args = parser.add_argument_group('Mask')
mask_args.add_argument('--mask_cls', type=str)
tokenizer_args = parser.add_argument_group('Tokenizer')
tokenizer_args.add_argument('--tokenizer_name', type=str, choices=[t.name.lower() for t in ilm.tokenize_util.Tokenizer])
tokenizer_args.add_argument('--tokenizer_custom_vocab_fp', type=str)
task_args = parser.add_argument_group('Task')
task_args.add_argument('--task', type=str, choices=[t.name.lower() for t in Task])
data_args = parser.add_argument_group('Data')
data_args.add_argument('--data_no_cache', action='store_false', dest='data_cache')
data_args.add_argument('--data_loader_num_workers', type=int)
model_args = parser.add_argument_group('Model')
model_args.add_argument('--model_name', type=str, choices=ilm.constants.GPT2_MODEL_NAMES)
train_args = parser.add_argument_group('Train')
train_args.add_argument('--train_examples_tag', type=str)
train_args.add_argument('--train_max_num_examples', type=int)
train_args.add_argument('--train_num_epochs', type=int)
train_args.add_argument('--train_from_scratch', action='store_true', dest='train_from_scratch')
train_args.add_argument('--train_batch_size', type=int)
train_args.add_argument('--train_batch_accumulation', type=int)
train_args.add_argument('--train_sequence_length', type=int)
train_args.add_argument('--train_skip_naive_incomplete', action='store_true', dest='train_skip_naive_incomplete')
train_args.add_argument('--train_eval_secs', type=float)
train_args.add_argument('--train_summary_secs', type=float)
train_args.add_argument('--train_minimal_supervision', action='store_false', dest='train_context')
train_args.add_argument('--train_learning_rate', type=float)
train_args.add_argument('--train_weight_decay', type=float)
train_args.add_argument('--train_adam_epsilon', type=float)
train_args.add_argument('--train_max_grad_norm', type=float)
eval_args = parser.add_argument_group('Eval')
eval_args.add_argument('--eval_only', action='store_true', dest='eval_only')
eval_args.add_argument('--eval_examples_tag', type=str)
eval_args.add_argument('--eval_max_num_examples', type=int)
eval_args.add_argument('--eval_batch_size', type=int)
eval_args.add_argument('--eval_sequence_length', type=int)
eval_args.add_argument('--eval_skip_naive_incomplete', action='store_true', dest='eval_skip_naive_incomplete')
parser.set_defaults(
seed=None,
wandb=False,
wandb_project_name='ilm',
mask_cls='ilm.mask.hierarchical.MaskHierarchical',
tokenizer_name='gpt2',
tokenizer_custom_vocab_fp=None,
task='ilm',
data_cache=True,
data_loader_num_workers=4,
model_name='gpt2',
train_examples_tag='train',
train_max_num_examples=None,
train_num_epochs=None,
train_from_scratch=False,
train_batch_size=8,
train_batch_accumulation=3,
train_sequence_length=256,
train_skip_naive_incomplete=False,
train_eval_secs=360,
train_summary_secs=360,
train_context=True,
train_learning_rate=5e-5,
train_weight_decay=0.,
train_adam_epsilon=1e-8,
train_max_grad_norm=1.,
eval_only=False,
eval_examples_tag='valid',
eval_max_num_examples=None,
eval_batch_size=8,
eval_sequence_length=256,
eval_skip_naive_incomplete=False)
args = parser.parse_args()
if args.wandb:
wandb.init(
project=args.wandb_project_name,
name=args.experiment_name)
wandb.config.update(args)
if args.seed is None:
args.seed = random.randint(0, 1e6)
print('Random seed {}'.format(args.seed))
train(args)