-
Notifications
You must be signed in to change notification settings - Fork 41
/
acl20_repro_eval.py
65 lines (52 loc) · 2.55 KB
/
acl20_repro_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from acl20_repro import PREMASKED_DATA, PRETRAINED_MODELS, PRETRAINED_MODEL_CONFIG_JSON, PAPER_TASK_TO_INTERNAL
# NOTE: https://chrisdonahue.com/gdrive-wget
_CMD_TEMPL = """
mkdir -p {eval_tmp_dir}/data
mkdir -p {eval_tmp_dir}/models/{model_tag}
# Download pre-masked data
wget -nc --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id={data_id}' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\\1\\n/p')&id={data_id}" -O {eval_tmp_dir}/data/{data_tag}_test.pkl && rm -rf /tmp/cookies.txt
# Download pre-trained model
wget -nc --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id={model_id}' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\\1\\n/p')&id={model_id}" -O {eval_tmp_dir}/models/{model_tag}/pytorch_model.bin && rm -rf /tmp/cookies.txt
wget -nc --no-check-certificate 'https://docs.google.com/uc?export=download&id=15JnXi7L6LeEB2fq4dFK2WRvDKyX46hVi' -O {eval_tmp_dir}/models/{model_tag}/config.json
# NOTE: train_ilm.py won't load weights unless it sees this file
touch {eval_tmp_dir}/models/{model_tag}/step.pkl
python train_ilm.py \\
eval \\
{eval_tmp_dir}/models/{model_tag} \\
{eval_tmp_dir}/data \\
--mask_cls {mask_cls} \\
--task {task} \\
--data_no_cache \\
--eval_only \\
--eval_examples_tag {data_tag}_test \\
--eval_batch_size 4 \\
--eval_sequence_length 256 \\
--eval_skip_naive_incomplete
"""
if __name__ == '__main__':
import os
import sys
try:
eval_tmp_dir = os.environ['ILM_DIR']
except:
eval_tmp_dir = '/tmp/ilm'
eval_tmp_dir = os.path.join(eval_tmp_dir, 'eval_repro')
dataset, model_type, infill_type = sys.argv[1:]
data_tag = '{}_{}'.format(dataset[:3], infill_type)
model_tag = '{}_{}'.format(dataset[:3], model_type)
mask_url = PREMASKED_DATA['test'][data_tag]
model_url = PRETRAINED_MODELS[model_tag]
if 'lyr' in model_tag:
mask_cls = 'ilm.mask.hierarchical.MaskHierarchicalVerse'
else:
mask_cls = 'ilm.mask.hierarchical.MaskHierarchical'
task = PAPER_TASK_TO_INTERNAL[model_tag.split('_')[-1].replace('scratch', '')]
print(_CMD_TEMPL.format(
eval_tmp_dir=eval_tmp_dir,
data_tag=data_tag,
model_tag=model_tag,
data_id=mask_url.split('=')[-1],
model_id=model_url.split('=')[-1],
mask_cls=mask_cls,
task=task
))