-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsoftware2.tex
450 lines (401 loc) · 19 KB
/
software2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
% Matrix Multiplication
% consists of concepts of threads.
\subsection{Case study: matrix multiplication}
% Step 1: consists of the concept of a kernel (__device__,__global__,..), threads
% and how to transfer the data from the GPU and CPU.
% cudaMalloc, cudaMallocManaged (unified memory)
\begin{frame}
\frametitle{Preliminary notion: matrix storage as a $1$D vector}
\begin{columns}
\column{0.65\textwidth}
\begin{figure}[H]
\centering
\includegraphics[width=0.65\textwidth]{./img/matrix8x8.png}
\caption{\small{P: $8x8$ Matrix ($d=8$)}}
\end{figure}
\end{columns}
\begin{itemize}
\item $P[i,j]$ is stored as $1$D vector: $P[i*d+j]$ where $i,j\,\in [0,8)$.
\end{itemize}
\end{frame}
% Matrix multiplication
\begin{frame}
\frametitle{Matrix Multiplication $P=M\,N$}
Matrix multiplication: $P=M \; N$ where $M,N \, \in \, \mathbb{R}^{dxd}$
\begin{itemize}
\item $P[i,j] = \displaystyle \sum_{k=0}^{d-1} M[i,k]\;N[k,j]$
\item $M[i,k]$ is stored as: $M[i*d+k]$
\item $N[k,j]$ is stored as: $N[k*d+j]$
\item Therefore,
\begin{equation}
P[i*d+j] = \sum_{k=0}^{d-1} M[i*d+k]\;N[k*d+j] \label{Eq:MatMul}
\end{equation}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Matrix Mul.: kernel (v.\,$1$)}
\begin{itemize}
\item Each Thread (threaIdx) is represented as a $2$D object, i.e.\,
(\lstinline[style=MyCudaStyle]|threadIdx.x|, \lstinline[style=MyCudaStyle]|threadIdx.y|)
(cfr.\,a point in plane geometry)
\item Each Thread calculates only $1$ element of $P$.
\end{itemize}
Implementation of Eq.\,($1$) using $1$ Block of Threads.
\lstinputlisting[style=MyCudaStyle, basicstyle=\tiny,
caption={\texttt{Kernel (v.\,$1$)}}]{./latexinc/matmul/1/mul.cu}
\end{frame}
\begin{frame}
\frametitle{Invoking kernel (v.\,$1$)}
\begin{itemize}
\item Invoking $1$ Block of Threads
\lstinputlisting[style=MyCudaStyle, basicstyle=\tiny,
caption={\texttt{Invoking kernel (v.\,$1$)}}]{./latexinc/matmul/1/main-sel.cu}
\end{itemize}
\end{frame}
% Step 2: Kernel using more than 1 block of threads
%
\begin{frame}
\frametitle{Mat. Mul (v.$2$): Grid of $2$D Blocks}
\begin{itemize}
\item \lstinline[style=MyCudaStyle]{int tx = blockIdx.x*blockDim.x + threadIdx.x;}
\item \lstinline[style=MyCudaStyle]{int ty = blockIdx.y*blockDim.y + threadIdx.y;}
\end{itemize}
\begin{columns}
\column{0.50\textwidth}
\begin{figure}[H]
\centering
\includegraphics[width=0.75\textwidth]{./img/BlockGrid.eps}
\caption{\small{$2$D-Grid of $2$D-Blocks of Threads}}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Matrix Mul.: visualization (v.\,$2$)}
\begin{columns}
\column{0.85\textwidth}
\begin{figure}[H]
\centering
\includegraphics[width=0.85\textwidth]{./img/mulB.jpg}
\caption{\small{Matrix Mul. ($2$D Grid)}}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Matrix Mul.: kernel (v.\,$2$)}
\lstinputlisting[style=MyCudaStyle, basicstyle=\tiny,
caption={\texttt{Kernel (v.\,$2$)}}]{./latexinc/matmul/2/mul.cu}
\end{frame}
\begin{frame}
\frametitle{Invoking kernel (v.\,$2$)}
\begin{itemize}
\item Invoking a grid of blocks of threads
\lstinputlisting[style=MyCudaStyle, basicstyle=\tiny,
caption={\texttt{Invoking kernel (v.\,$2$)}}]{./latexinc/matmul/2/main-sel.cu}
\end{itemize}
\end{frame}
% Step 3: Introduces the concept of shared memory (+__syncthreads())
\begin{frame}
\frametitle{Types of GPU memory}
\begin{itemize}
\item \textbf{\textcolor{blue}{global memory}}: (largest, slowest and often the bottleneck).
\item \textbf{\textcolor{blue}{constant memory}}: cached, read-only
\begin{itemize}
\item \lstinline[style=MyCudaStyle]|\_\_constant\_\_|: constant memory space specifier
\end{itemize}
\item \textbf{\textcolor{blue}{registers}}: fast, on-chip memory (exclusive to each thread).
\item \textbf{\textcolor{blue}{shared memory}}: allocated per thread block \& low latency
\begin{itemize}
\item \lstinline[style=MyCudaStyle]|\_\_shared\_\_|: shared memory space specifier
\item \lstinline[style=MyCudaStyle]|\_\_syncthreads()|: barrier function which forces
all threads in a \\block to wait until all threads have arrived before proceeding.\\
(block level synchronization).
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Matrix Mul.: use of shared memory (v.\,$3$)}
\begin{columns}
\column{0.85\textwidth}
\begin{figure}[H]
\centering
\includegraphics[width=0.85\textwidth]{./img/mulC.jpg}
\caption{\small{Matrix Mul.: use of shared memory}}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Matrix Mul.: kernel (v.\,$3$) - use of shared memory}
\lstinputlisting[style=MyCudaStyle, basicstyle=\tiny,
caption={\texttt{Kernel (v.\,$3$)}}]{./latexinc/matmul/3/mul.cu}
\end{frame}
% Compilation of the CUDA code
% introducing -compute, -arch
\subsection{Building CUDA applications \& useful env. variables}
\begin{frame}
\frametitle{Building/Compiling CUDA applications}
General scheme:
\begin{itemize}
\item Source code for CUDA applications:
\begin{itemize}
\item \texttt{C}/\CC\ host code with extensions to deal with the device(s).
\item Other programming languages are allowed e.g. \texttt{Fortran}
\end{itemize}
\item Primo: \textbf{\textcolor{green}{separate}} device functions from host code.
\item \textbf{\textcolor{green}{Device code}}: preprocessing, compilation
with the NVIDIA compiler (\texttt{nvcc}).
\item \textbf{\textcolor{green}{Host code}}: preprocessed, compiled with a host (\texttt{C}/\CC)
compiler e.\,g.\,(\texttt{gcc, g++, icc, icpc, \ldots})
\item Compiled device functions are \textbf{\textcolor{green}{embedded}} as \texttt{fatbinary}
images in the host object file.
\item \textbf{\textcolor{green}{Linking stage}}: adding CUDA runtime libraries
to the host object file to create an executable.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Further concepts}
\begin{itemize}
\item \texttt{.cu} : Suffix for CUDA source file (host code (\texttt{C},\CC) \& device code).
\item \texttt{.cuf}: Suffix for CUDA source file (host code (\texttt{Fortan}) \& device code).
\item \texttt{.ptx}: Suffix for \textbf{P}arallel \textbf{T}hread E\textbf{x}ecution (\texttt{PTX}) files.
An intermediate representation (similar to assembly for a
\textbf{\textcolor{blue}{virtual GPU architecture}}\footnote{Virtual architectures
bear the \quotes{\texttt{compute\_}} \textbf{\textcolor{green}{prefix}} e.\,g.\,\quotes{\texttt{compute\_70}}.}
\item \texttt{.cubin}: Suffix for the \textbf{CU}DA device \textbf{bin}ary
file pertaining to a \textbf{\textcolor{blue}{real GPU architecture}}\footnote{Real (physical) architectures
bear the \quotes{\texttt{sm\_}} \textbf{\textcolor{green}{prefix}} e.\,g.\,\quotes{\texttt{sm\_70}}.\\
\hspace{4ex}\textcolor{orange}{Memento}: \quotes{\texttt{sm}} stands
for the physical streaming multiprocessor.}
\item \texttt{fatbin}: Multiple \texttt{PTX} [\& \texttt{cubin}] files are merged into a \texttt{fatbin} file.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Compilation trajectory (cont.)}
\begin{columns}
\column{0.75\textwidth}
\begin{figure}[H]
\centering
\includegraphics[width=0.65\textwidth]{./img/compileTrajectory.png}
\caption{\small{Compilation trajectory}}
\end{figure}
\end{columns}
\end{frame}
% Still to be finished
\begin{frame}
\frametitle{In praxi,}
We will now address the following questions:
\begin{itemize}
\item What are the recent CUDA architectures
\item How to find the compute capability (CC) of a device
\item How to build an executable for a particular device.
\item How to build an executable for multiple architectures
\end{itemize}
\end{frame}
% https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#gpu-compilation
\begin{frame}
\frametitle{Recent CUDA Architectures/Generations}
\begin{itemize}
\item NVIDA GPU: $xy$ $x$:generation (major) $y$: minor
\item new generation: major improvement in functionality/chip
\item \textbf{binary} compatibility is \textbf{NOT} garantueed among generations.
\end{itemize}
\begin{table}[H]
\begin{center}
\begin{tabular}{c|c|c|c}
\multirow{2}{*} \texttt{Architecture/} & Year & \texttt{compute\_} & \texttt{sm\_} \\
\texttt{Generation} & & (\textit{virtual}) & (\textit{real}) \\
\hline
\texttt{Maxwell} & 2014 & 50, 52, 53 & 50, 52, 53 \\
\texttt{Pascal} & 2016 & 60, 61, 62 & 60, 61, 62 \\
\texttt{Volta} & 2017 & 70, 72 & 70, 72 \\
\texttt{Turing} & 2018 & 75 & 75 \\
\texttt{Ampere} & 2020 & 80, 86, 87 & 80, 86, 87 \\
\texttt{Ada Lovelace} & 2022 & 89 & 89\\
\texttt{Hopper} & 2022 & 90, 90a & 90, 90a \\
\hline
\end{tabular}
\end{center}
\caption{\small{Some of the recent CUDA architectures (10/08/2024)}}
\end{table}
\end{frame}
% Finding the Compute Capability (CC) of GPU devices
\begin{frame}
\frametitle{Retrieval of the Compute Compability (CC)}
You can:
\begin{enumerate}
\item use the cmd \texttt{nvidia-smi} to display the architecture.\\
The cmd \texttt{nvidia-smi} is \textbf{\textcolor{green}{extremely powerful}} tool to query\\
the state \& specs of the devices attached to a particular node.\footnote{\textbf{\textcolor{orange}{Note}}: it is
recommended to
investigate the different flags pertaining to the cmd.}
\item use the cmd \texttt{nvaccelinfo}
(part of \href{https://developer.nvidia.com/hpc-sdk}{NVIDIA HPC SDK})
\item write some basic \texttt{C}/\CC\ code \footnote{Already available in \texttt{src/devicequery}.\\
\hspace{4ex}The name of the corresponding executable is \texttt{devinfo}}.
relying on the following \texttt{CUDA} APIs:\\
\begin{itemize}
\item \lstinline[style=MyCudaStyle]|cudaGetDeviceCount(int *tot)|: \\
returns the number of devices on the localhost.
\item \lstinline[style=MyCudaStyle]|cudaGetDeviceProperties(cudaDeviceProp *p, int idev)|: \\
returns information about the compute-device \lstinline[style=MyCudaStyle]|idev|.
\end{itemize}
\end{enumerate}
\end{frame}
% Use of nvidia-smi to dind the compute capability
\begin{frame}
\frametitle{Use of \texttt{nvidia-smi}}
\begin{columns}
\column{0.85\textwidth}
\begin{figure}[H]
\centering
\includegraphics[width=0.85\textwidth]{./img/nvidia-smi2.png}
\caption{\small{\texttt{nvidia-smi}}}
\end{figure}
\end{columns}
\end{frame}
% Use of nvaccelinfo
\begin{frame}
\frametitle{Retrieval of CC using \texttt{nvaccelinfo}}
\begin{columns}
\column{0.75\textwidth}
\begin{figure}[H]
\centering
\includegraphics[width=0.75\textwidth]{./img/nvaccelinfo.png}
\caption{\small{Use of \texttt{nvaccelinfo} to retrieve \texttt{compute\_}}}
\end{figure}
\end{columns}
\end{frame}
% Use of devinfo (based on my Own Code to be found in src/querydevice)
\begin{frame}
\frametitle{Retrieval of CC through some simple CUDA APIs}
\begin{columns}
\column{0.70\textwidth}
\begin{figure}[H]
\centering
\includegraphics[width=0.70\textwidth]{./img/devinfo.png}
\caption{\small{\texttt{devinfo} based on a few CUDA APIs}}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Compiling your code for a particular device/devices}
\begin{itemize}
\item Compilation goes in $2$ steps:
\begin{enumerate}
\item \texttt{PTX} representation: generic assembly instructions for a \\
\textit{virtual} (\textcolor{green}{\textbf{\texttt{compute\_}}} prefix) GPU architecture.\\
The resulting \texttt{.ptx} file is human readable (\textbf{text} file).
\item \texttt{Binary generation}: generation of an \textbf{object} file for the \\
\textit{real} (\textbf{\textcolor{green}{\texttt{sm\_}}} prefix)
GPU architecture (based on the \texttt{PTX} file).
\end{enumerate}
\item \texttt{-arch}/\texttt{-code} flags
\begin{itemize}
\item \texttt{--gpu-architecture|-arch <arch>}: specifies the name of \\
$1$ \textit{virtual} GPU architecture for which the code needs to be compiled.\\
e.\,g.\,\texttt{-arch=compute\_50}
\item \texttt{--gpu-code|-code <arch>}: specifies the name(s) of the \textit{real}
GPU architecture(s) for which the binary needs to be compiled.\\
e.\,g.\,\texttt{-code=sm\_52}
\end{itemize}
\end{itemize}
\end{frame}
% See also:https://docs.nvidia.com/cuda/archive/11.6.1/cuda-compiler-driver-nvcc/index.html
\begin{frame}
\frametitle{Compiling your code (cont.)}
\begin{itemize}
\item Therefore, choose $1$ virtual architecture and the accompanying real architectures\\
e.\,g.\, \texttt{-arch=compute\_50 -code=sm\_50,sm\_51,sm\_52}\\
\begin{itemize}
\item \texttt{PTX} file generated for the \texttt{compute\_50} (\textit{virtual}) arch.
\item \textbf{fatbinary} object created for the (\texttt{real}) arch. \texttt{sm\_50,sm\_51,sm\_52}
\end{itemize}
\item \texttt{--generate-code|-gencode arch=<arch>,code=<code> \ldots}
\begin{itemize}
\item \textbf{\textcolor{green}{Generalization}} of the previous construct:\\
\texttt{--gpu-architecture=<arch> --gpu-code=<code>}.
\item allows the creation of binaries for different architectures.
\item example:
\lstinputlisting[basicstyle=\tiny,language=bash]{./latexinc/cuflags.txt}
\end{itemize}
\end{itemize}
\end{frame}
% nvprof, nvsight, cuda-gdb
\subsection{Profiling \& debugging}
\begin{frame}
\frametitle{Profiling \& debugging}
CUDA SDK comes with:
\begin{itemize}
\item its own profiler: \href{https://docs.nvidia.com/cuda/profiler-users-guide/}{\texttt{nvprof}}.
\item its own debugger: \href{https://docs.nvidia.com/nsight-visual-studio-edition/cuda-debugger/}{\texttt{nvsight}}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Profiling \texttt{mul3} using nvprof}
\begin{columns}
\column{0.90\textwidth}
\begin{figure}[H]
\centering
\includegraphics[width=0.95\textwidth]{./img/nvprof-mul3.png}
\caption{\small{Profiling \texttt{mul3} on \texttt{notch001}}}
\end{figure}
\end{columns}
\end{frame}
% CUDA Libraries: CUBLAS, CUFFT, CUDNN, MAGMA, CURAND, NCCL
\subsection{Important CUDA libraries}
\begin{frame}
\frametitle{Important CUDA libraries}
In order to increase the performance of your code we recommend
to use highly-optimized libraries. Among them, we have:
\begin{itemize}
\item \href{https://developer.nvidia.com/cublas}{\textbf{\textcolor{green}{cuBLAS}}}:
\textbf{B}asic \textbf{L}inear \textbf{A}lgebra \textbf{S}ubroutines on NVIDIA GPUs.
\item \href{https://icl.utk.edu/magma/}{\textbf{\textcolor{green}{MAGMA}}}:
\textbf{M}atrix \textbf{A}lgebra on \textbf{G}PU and \textbf{M}ulti-core \textbf{A}rchitectures.
\item \href{https://docs.nvidia.com/cuda/pdf/CURAND_Library.pdf}{\textbf{\textcolor{green}{cuRAND}}}: Random Number Generation library.
\item \href{https://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf}{\textbf{\textcolor{green}{cuFFT}}}:
CUDA \textbf{F}ast \textbf{F}ourier \textbf{T}ransform library.
\item \href{https://developer.nvidia.com/nccl}{\textbf{\textcolor{green}{NCCL}}}:
\textbf{N}VIDIA \textbf{C}ollective \textbf{C}ommunications \textbf{L}ibrary.
\item \href{https://developer.nvidia.com/cudnn}{\textbf{\textcolor{green}{cuDNN}}}:
CUDA \textbf{D}eep \textbf{N}eural \textbf{N}etwork library.
\item \href{https://developer.nvidia.com/cutensor}{\textbf{\textcolor{green}{cuTENSOR}}}: GPU-accelerated Tensor Linear Algebra.
\item \href{https://developer.nvidia.com/DALI}{\textbf{\textcolor{green}{DALI}}}: NVIDIA \textbf{Da}ta Loading \textbf{Li}brary.
\item $\ldots$
\end{itemize}
\end{frame}
% Alternatives:
% - Within CUDA: CudaFortran, OpenAcc (pragmas)
% - Alternatives to CUDA: OpenCL, HIP
% - Kokkos
\subsection{Alternatives to CUDA}
\begin{frame}
\frametitle{Alternatives to CUDA}
\begin{itemize}
\item Similar to CUDA
\begin{itemize}
\item \href{https://www.amd.com/en/products/software/rocm.html}{\textbf{\textcolor{green}{ROCM}}} (AMD)
\end{itemize}
\item \href{https://www.openacc.org/}{\textbf{\textcolor{green}{OpenACC}}} (use of directives (cfr. \texttt{OpenMP})
\begin{itemize}
\item GCC: supports OpenACC for NVIDIA \& AMD GPUs.
\item NVIDIA HPC SDK (formerly PGI)
\item Sourcery Codebench (AMD GPU) % https://www.openacc.org/tools/sourcery-codebench
\end{itemize}
\item Higher-level abstractions
\begin{itemize}
\item \href{https://www.kokkos.org/about/core/}{\textbf{\textcolor{green}{Kokkos}}} (prog. model for parallel algorithms for many-core chips)
\end{itemize}
\end{itemize}
\end{frame}
\subsection{Links}
\begin{frame}
\frametitle{Links}
\begin{itemize}
\item \href{https://docs.nvidia.com/cuda/index.html}{CUDA Toolkit Documentation}
\item \href{https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html}{CUDA \CC\, Programming Guide Release $12.6$
(10/01/24)}
\item \href{https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html}{CUDA \CC\, Best Practices Guide, Release $12.6$ (09/24/24)}
\item \href{https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/}{NVIDIA CUDA Compiler Driver NVCC, Release $12.6$ (09/24/24)}
\item \href{https://docs.nvidia.com/cuda/parallel-thread-execution/}{PTX \& ISA Release $8.5$ (09/24/24)}
\end{itemize}
\end{frame}