-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_depth_complete.py
executable file
·127 lines (110 loc) · 4.58 KB
/
train_depth_complete.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python
# Author: Cho-Ying Wu, USC, March 2021
# Scene Completeness-Aware Lidar Depth Completion for Driving Scenario
# ICASSP 2021
import time
from options.options import AdvanceOptions
from models import create_model
from util.visualizer import Visualizer
from dataloaders.kitti_dataloader import KITTIDataset
import numpy as np
import random
import torch
import cv2
if __name__ == '__main__':
train_opt = AdvanceOptions().parse(True)
if not train_opt.test_path or not train_opt.train_path:
raise ValueError('Please specify paths for both the training and testing data.')
train_dataset = KITTIDataset(train_opt.train_path, type='train',
modality='d2sm')
test_dataset = KITTIDataset(train_opt.test_path, type='val',
modality='d2sm')
train_data_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=train_opt.batch_size, shuffle=True,
num_workers=train_opt.num_threads, pin_memory=True, sampler=None,
worker_init_fn=lambda work_id:np.random.seed(train_opt.seed + work_id))
test_opt = AdvanceOptions().parse(True)
test_opt.phase = 'val'
test_opt.batch_size = 1
test_opt.num_threads = 1
test_opt.serial_batches = True
test_opt.no_flip = True
test_opt.display_id = -1
test_data_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=test_opt.batch_size, shuffle=True, num_workers=test_opt.num_threads, pin_memory=True)
train_dataset_size = len(train_data_loader)
print('#training images = %d' % train_dataset_size)
test_dataset_size = len(test_data_loader)
print('#test images = %d' % test_dataset_size)
model = create_model(train_opt, train_dataset)
model.setup(train_opt)
visualizer = Visualizer(train_opt) # logger instance
total_steps = 0
for epoch in range(train_opt.epoch_count, train_opt.niter + 1):
model.train()
epoch_start_time = time.time()
iter_data_time = time.time()
epoch_iter = 0
model.init_eval()
iterator = iter(train_data_loader)
while True:
try:
next_batch = next(iterator)
except StopIteration:
break
data, target = next_batch[0], next_batch[1]
iter_start_time = time.time()
if total_steps % train_opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_steps += train_opt.batch_size
epoch_iter += train_opt.batch_size
model.set_new_input(data,target)
model.optimize_parameters()
if total_steps % train_opt.print_freq == 0:
losses = model.get_current_losses()
t = (time.time() - iter_start_time) / train_opt.batch_size
visualizer.print_current_losses(epoch, epoch_iter, losses, t, t_data)
message = model.print_depth_evaluation()
visualizer.print_current_depth_evaluation(message)
print()
iter_data_time = time.time()
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, train_opt.niter, time.time() - epoch_start_time))
model.update_learning_rate()
if epoch and epoch % train_opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))
model.save_networks('latest')
model.save_networks(epoch)
model.eval()
test_loss_iter = []
epoch_iter = 0
model.init_test_eval()
with torch.no_grad():
iterator = iter(test_data_loader)
while True:
try:
next_batch = next(iterator)
except IndexError:
print("Corrupted data are catched! Discard this batch!")
continue
except StopIteration:
break
data, target = next_batch[0], next_batch[1]
model.set_new_input(data,target)
model.forward()
model.test_depth_evaluation(test_opt)
model.get_loss()
epoch_iter += test_opt.batch_size
losses = model.get_current_losses()
print('test epoch {0:}, iters: {1:}/{2:} '.format(epoch, epoch_iter, len(test_dataset) * test_opt.batch_size), end='\r')
message = model.print_test_depth_evaluation()
visualizer.print_current_depth_evaluation(message) # print the loss, and error message to the log file
print( # print on screen for fast validation
'RMSE= Curr: {result.rmse:.4f}(Avg: {average.rmse:.4f}) '
'MSE= Curr:{result.mse:.4f}(Avg: {average.mse:.4f}) '
'MAE= Curr:{result.mae:.4f}(Avg: {average.mae:.4f}) '
'Delta1= Curr:{result.delta1:.4f}(Avg: {average.delta1:.4f}) '
'Delta2= Curr:{result.delta2:.4f}(Avg: {average.delta2:.4f}) '
'Delta3= Curr:{result.delta3:.4f}(Avg: {average.delta3:.4f}) '
'REL= Curr:{result.absrel:.4f}(Avg: {average.absrel:.4f}) '
'Lg10= Curr:{result.lg10:.4f}(Avg: {average.lg10:.4f}) '.format(
result=model.test_result, average=model.test_average.average()))