-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdata_manager.py
78 lines (57 loc) · 2.19 KB
/
data_manager.py
1
import uprootimport pandas as pdfrom analib import PhysObj, Eventfrom info import allVars, cutVars, cutDict, weightDictdef processData (fileName): ## open file, get events f = uproot.open(fileName + '.root') events = f.get('Events') ## make PhysObj of the event data = PhysObj('data_' + fileName) for var in allVars: data[var] = pd.DataFrame(events.array(var)) if 'eta' in var: data[var] = data[var].abs() ## make event object ev = Event(data) ## apply cuts for cutVar in cutVars: data.cut(data[cutVar] > cutDict[cutVar]) ## sync Events ev.sync() ## rename columns jetNums = list(range(1, 9)) # for naming the columns wideData = pd.DataFrame() colNames = [] for var in allVars: colValues = [var + "_" + str(i) for i in jetNums] colNames = colNames + colValues colDict = dict(list(enumerate(colValues))) data[var] = data[var].rename(columns = colDict) ## slicing so only 4 jets. ## heck some of them only have 3 # if (len(data[var].columns) > 3): # dfToAppend = data[var].iloc[:, [0,1,2,3]] # else: # dfToAppend = data[var].iloc[:, [0,1,2]] ## slice down to only 3 jets dfToAppend = data[var].iloc[:, [0, 1, 2]] if var == allVars[0]: wideData = wideData.append(dfToAppend) else: wideData = wideData.join(dfToAppend, sort = False) # if var == allVars[0]: # wideData = wideData.append(data[var]) # else: # wideData = wideData.join(data[var], sort=False) ## add info about whether it is a signal or bg, and add weight ## idk if i need to know what process each one is but here we go ##wideData['process'] = fileName ## right now I am just cutting the data out. might try to use weights later wideData['weights'] = weightDict[fileName] #wideData = wideData.sample(frac = weightDict[fileName]) if fileName == 'GGH_HPT': wideData['target'] = 1 else: wideData['target'] = 0 return wideData