This is the official repository for the following paper:
Chihiro Nakatani, Hiroaki Kawashima, Norimichi Ukita
Interaction-aware Joint Attention Estimation Using People Attributes, ICCV2023
Project page: https://toyota-ti.ac.jp/Lab/Denshi/iim/ukita/selection/ICCV2023-PJAE.html
python 3.6.9
And you can use requirements.txt
pip install -r requirements.txt
You can download daatset from the following url.
These dataset are required to place in data/ in the repository.
-
Volleyball dataset (data/videos)
https://github.com/mostafa-saad/deep-activity-rec -
Volleyball dataset (data/jae_dataset_bbox_gt, data/jae_dataset_bbox_pred)
https://drive.google.com/drive/folders/1O55_wri92uv87g-2aDh8ll6dFVupmFaB?usp=share_link -
Volleyball dataset (data/vatic_ball_annotation/annotation_data)
https://drive.google.com/drive/folders/1O55_wri92uv87g-2aDh8ll6dFVupmFaB?usp=share_link -
VideoCoAtt dataset (data/VideoCoAtt_Dataset)
http://www.stat.ucla.edu/~lifengfan/shared_attention -
VideoCoAtt dataset (data/VideoCoAtt_Dataset/dets_heads)
https://drive.google.com/drive/folders/1O55_wri92uv87g-2aDh8ll6dFVupmFaB?usp=share_link
- You can change parameters of the model (e.g., multi-head numbers, transformer encoder numbers, ...) by editing the yaml files.
- Trained model are also published in here (https://drive.google.com/drive/folders/1O55_wri92uv87g-2aDh8ll6dFVupmFaB?usp=share_link )
- trained models required to place in saved_weights/volleyball or saved_weights/videocoatt in the repository.
- Ours
python train.py yaml/volleyball/train_ours_p_p.yaml
python train.py yaml/volleyball/train_ours.yaml
The following folder contains the trained models.
- volleyball-dual-mid_p_p_field_middle_p_s_davt_bbox_PRED_gaze_PRED_act_PRED_weight_fusion_fine_token_only (Ex.1)
- volleyball-dual-mid_p_p_field_middle_p_s_davt_bbox_GT_gaze_GT_act_GT_weight_fusion_fine_token_only (Ex.2)
- DAVT
python train.py yaml/volleyball/train_ours_p_p.yaml
python train.py yaml/volleyball/train_ours.yaml
The following folder contains the trained models.
- volleyball-dual-mid_p_p_field_middle_p_s_davt_bbox_PRED_gaze_PRED_act_PRED_p_s_only (Ex.1)
- volleyball-dual-volleyball-dual-mid_p_p_field_middle_p_s_davt_bbox_GT_gaze_GT_act_GT_p_s_only (Ex.2)
- ISA
python train.py yaml/volleyball/train_ours_isa.yaml
The following folder contains the trained models.
- volleyball-dual-isa_bbox_PRED_gaze_PRED_act_PRED (Ex.1)
- volleyball-dual-isa_bbox_GT_gaze_GT_act_GT (Ex.2)
- Ours
python train.py yaml/videocoatt/train_ours_p_p.yaml
python train.py yaml/videocoatt/train_ours.yaml
The following folder contains the trained models.
- videocoatt-dual-p_p_field_deep_p_s_davt_scalar_weight_fix (Ex.1)
- videocoatt-dual-p_p_field_deep_p_s_davt_scalar_weight_fix_token_only_GT (Ex.2)
-
DAVT
Trained model is published in here (https://github.com/ejcgt/attention-target-detection) -
ISA
python train.py yaml/videocoatt/train_ours_isa.yaml
The following folder contains the trained models.
- videocoatt-isa_bbox_PRED_gaze_PRED (Ex.1)
- videocoatt-isa_bbox_GT_gaze_GT (Ex.2)
- HGTD
python train.py yaml/videoattentiontarget/train_hgt.yaml
The following folder contains the trained models.
- videocoatt-videoattentiontarget-hgt-high (Ex.1 and Ex.2)
You can choose the model which you would like to evaluate in the yaml files.
- Ours and DAVT
python eval_on_volleyball_ours.py yaml/volleyball/eval.yaml
- ISA
python eval_on_videocoatt_isa.py yaml/volleyball/eval.yaml
- Ours and DAVT
python eval_on_videocoatt_ours.py yaml/videocoatt/eval.yaml
- ISA
python eval_on_videocoatt_isa.py yaml/videocoatt/eval.yaml
- HGTD
python eval_on_videocoatt_hgt.py yaml/videocoatt/eval.yaml
You can choose the model which you would like to evaluate in the yaml files.
python demo_ours.py yaml/volleyball/demo.yaml
python demo_ours.py yaml/videocoatt/demo.yaml