-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_unified_test.py
164 lines (126 loc) · 5.78 KB
/
main_unified_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import sys
import pprint
import random
import time
import tqdm
import logging
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import torch.distributed as dist
import losses
import models
import datasets
import lib.utils as utils
from lib.utils import AverageMeter
from optimizer.optimizer import Optimizer
from scorer.scorer import Scorer
from lib.config import cfg, cfg_from_file
import json
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Image Captioning')
parser.add_argument('--folder', dest='folder', type=str, default=None)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--resume", type=int, default=-1)
parser.add_argument("--resume_start", type=int, default=-1)
parser.add_argument("--resume_lr", type=float, default=None)
parser.add_argument("--save_every_epoch", type=int, default=-1)
parser.add_argument("--testval_duringtrain", type=int, default=-1)
parser.add_argument("--dumponly", type=int, default=-1)
parser.add_argument("--testwithoutgen", type=int, default=-1)
parser.add_argument("--results_path", type=str, default="gen_captions/gen.json")
parser.add_argument("--multi_objective", type=int, default=-1)
parser.add_argument("--eval_multi_num", type=int, default=1)
parser.add_argument("--preference_diversity_weight", type=float, default=None)
parser.add_argument("--out_beam", type=int, default=-1)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
if args.folder is not None:
cfg_from_file(os.path.join(args.folder, 'config.yml'))
cfg.ROOT_DIR = args.folder
if ('Variational' in cfg.MODEL.TYPE or 'CVAE' in cfg.MODEL.TYPE):
args.var_flag = True
else:
args.var_flag = False
if (args.multi_objective > -1):
cfg.MODEL.VAR.use_preference = True
if (cfg.MODEL.TASK != 'IMAGE_CAPTIONING'):
print("task_type", cfg.MODEL.TASK, "importing ParaphraseTrainer")
from all_trainer import ParaphraseTrainer as Trainer
else:
print("task_type", cfg.MODEL.TASK, "importing ImageCaptionTrainer")
from all_trainer import ImageCaptionTrainer as Trainer
print('Called with args:')
print(args)
trainer = Trainer(args)
print("loading best model and testing")
print(trainer.snapshot_path("caption_model_best"))
trainer.model.load_state_dict(
torch.load(trainer.snapshot_path("caption_model_best"),
map_location=lambda storage, loc: storage)
)
trainer.test_evaler.evaler.results_path = args.results_path
# update cfg params
cfg.INFERENCE.SAMPLE_SIZE = args.eval_multi_num
if (args.preference_diversity_weight is not None):
cfg.INFERENCE.diversity_preference = args.preference_diversity_weight
print("diversity_preference", cfg.INFERENCE.diversity_preference)
if (args.out_beam > -1):
trainer.test_evaler.out_beam = True
cfg.INFERENCE.BEAM_SIZE = args.eval_multi_num
else:
trainer.test_evaler.out_beam = False
trainer.test_evaler.results_path = args.results_path
if (args.dumponly > 0):
trainer.test_evaler.dump_only = True
trainer.test_evaler.evaler.dump_only = True
trainer.test_evaler.evaler.results_path = args.results_path
test_res = trainer.test_evaler(trainer.model,'test_best')
else:
if (args.testwithoutgen <= 0):
test_res = trainer.test_evaler(trainer.model,'test_best')
print("generate and save to", args.results_path)
with open(args.results_path, "r") as f:
results = json.load(f)
# trainer.test_evaler.evaler.dump_only = False
# trainer.test_evaler.evaler.eval_test = True
# eval_res = trainer.test_evaler.evaler.eval(results)
print('######## Epoch (TEST) Best ########')
print(test_res)
if (args.preference_diversity_weight is not None):
temp_results_path = args.results_path
#temp_results_path = temp_results_path.replace(".json", "_"+str(args.preference_diversity_weight)+".json")
temp_results_path = temp_results_path.replace(".json", "_fidelity.json")
with open(temp_results_path, "w") as f:
json.dump(test_res, f)
print("saving res in", temp_results_path)
# imgToAnns = trainer.test_evaler.evaler.coco.imgToAnns
# all_gen, all_anns = [], []
# for res in results:
# imgId = res["image_id"]
# ann = [item["caption"] for item in imgToAnns[imgId]]
# all_gen.append(res["caption"])
# all_anns.append(ann)
# #break
# print("nums:", len(all_gen), len(all_anns))
# from bert_score import score, BERTScorer
# scorer = BERTScorer(lang="en", rescale_with_baseline=True)
# (P, R, F), hashname = scorer.score(all_gen, all_anns, return_hash=True)
# print("BERTScore:", f"{hashname}: P={P.mean().item():.6f} R={R.mean().item():.6f} F={F.mean().item():.6f}")
# from sentence_transformers import SentenceTransformer
# from sentence_transformers.util import pair_cosine_score
# sbert_model = SentenceTransformer('stsb-roberta-large')
# all_max_cscores, all_mean_cscores = pair_cosine_score(sbert_model, all_gen, all_anns)
# #print("SBERTCS score, max:", all_max_cscores.mean(), all_mean_cscores.mean())
# print("SBERTCS score:", f"max={all_max_cscores.mean():.6f} mean={all_mean_cscores.mean():.6f}")