-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_unified.py
executable file
·76 lines (61 loc) · 2.12 KB
/
main_unified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import sys
import pprint
import random
import time
import tqdm
import logging
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import torch.distributed as dist
import losses
import models
import datasets
import lib.utils as utils
from lib.utils import AverageMeter
from optimizer.optimizer import Optimizer
from scorer.scorer import Scorer
from lib.config import cfg, cfg_from_file
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Image Captioning')
parser.add_argument('--folder', dest='folder', type=str, default=None)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--resume", type=int, default=-1)
parser.add_argument("--resume_start", type=int, default=-1)
parser.add_argument("--resume_lr", type=float, default=None)
parser.add_argument("--save_every_epoch", type=int, default=-1)
parser.add_argument("--testval_duringtrain", type=int, default=-1)
parser.add_argument("--multi_objective", type=int, default=-1)
parser.add_argument("--use_static_preference", type=int, default=-1)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
if args.folder is not None:
cfg_from_file(os.path.join(args.folder, 'config.yml'))
cfg.ROOT_DIR = args.folder
if ('Variational' in cfg.MODEL.TYPE or 'CVAE' in cfg.MODEL.TYPE):
args.var_flag = True
else:
args.var_flag = False
if (args.multi_objective > -1):
cfg.MODEL.VAR.use_preference = True
if (cfg.MODEL.TASK != 'IMAGE_CAPTIONING'):
print("task_type", cfg.MODEL.TASK, "importing ParaphraseTrainer")
from all_trainer import ParaphraseTrainer as Trainer
else:
print("task_type", cfg.MODEL.TASK, "importing ImageCaptionTrainer")
from all_trainer import ImageCaptionTrainer as Trainer
print('Called with args:')
print(args)
trainer = Trainer(args)
trainer.train()