-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathrun_hunyuan_video.py
46 lines (39 loc) · 1.26 KB
/
run_hunyuan_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
model_id = "tencent/HunyuanVideo"
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
model_id,
subfolder="transformer",
torch_dtype=torch.bfloat16,
revision="refs/pr/18",
)
pipe = HunyuanVideoPipeline.from_pretrained(
model_id,
transformer=transformer,
torch_dtype=torch.float16,
revision="refs/pr/18",
).to("cuda")
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
apply_cache_on_pipe(pipe)
# Enable memory savings
# pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling(
# Make it runnable on GPUs with 48GB memory
# tile_sample_min_height=128,
# tile_sample_stride_height=96,
# tile_sample_min_width=128,
# tile_sample_stride_width=96,
# tile_sample_min_num_frames=32,
# tile_sample_stride_num_frames=24,
)
# pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune-no-cudagraphs")
output = pipe(
prompt="A cat walks on the grass, realistic",
height=720,
width=1280,
num_frames=129,
num_inference_steps=30,
).frames[0]
print("Saving video to hunyuan_video.mp4")
export_to_video(output, "hunyuan_video.mp4", fps=15)