forked from SCLBD/BackdoorBench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisual_act.py
executable file
·172 lines (145 loc) · 6.58 KB
/
visual_act.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import sys
import os
import yaml
import torch
import numpy as np
import torchvision.transforms as transforms
sys.path.append(os.getcwd())
from utils.defense_utils.dbd.model.model import SelfModel, LinearModel
from utils.defense_utils.dbd.model.utils import (
get_network_dbd,
load_state,
get_criterion,
get_optimizer,
get_scheduler,
)
from utils.save_load_attack import load_attack_result
from utils.aggregate_block.model_trainer_generate import generate_cls_model
from utils.aggregate_block.fix_random import fix_random
from utils.aggregate_block.dataset_and_transform_generate import (
get_transform,
get_dataset_denormalization,
)
from visual_utils import *
# Basic setting: args
args = get_args()
with open(args.yaml_path, "r") as stream:
config = yaml.safe_load(stream)
config.update({k: v for k, v in args.__dict__.items() if v is not None})
args.__dict__ = config
args = preprocess_args(args)
fix_random(int(args.random_seed))
save_path_attack = "./record/" + args.result_file_attack
visual_save_path = save_path_attack + "/visual"
# Load result
if args.prototype:
result_attack = load_prototype_result(args, save_path_attack)
else:
result_attack = load_attack_result(save_path_attack + "/attack_result.pt")
selected_classes = np.arange(args.num_classes)
# Select classes to visualize
if args.num_classes > args.c_sub:
selected_classes = np.delete(selected_classes, args.target_class)
selected_classes = np.random.choice(
selected_classes, args.c_sub-1, replace=False)
selected_classes = np.append(selected_classes, args.target_class)
# keep the same transforms for train and test dataset for better visualization
result_attack["clean_train"].wrap_img_transform = result_attack["clean_test"].wrap_img_transform
result_attack["bd_train"].wrap_img_transform = result_attack["bd_test"].wrap_img_transform
# Create dataset
if args.visual_dataset == 'mixed':
bd_test_with_trans = result_attack["bd_test"]
visual_dataset = generate_mix_dataset(
bd_test_with_trans, args.target_class, args.pratio, selected_classes, max_num_samples=args.n_sub)
elif args.visual_dataset == 'clean_train':
clean_train_with_trans = result_attack["clean_train"]
visual_dataset = generate_clean_dataset(
clean_train_with_trans, selected_classes, max_num_samples=args.n_sub)
elif args.visual_dataset == 'clean_test':
clean_test_with_trans = result_attack["clean_test"]
visual_dataset = generate_clean_dataset(
clean_test_with_trans, selected_classes, max_num_samples=args.n_sub)
elif args.visual_dataset == 'bd_train':
bd_train_with_trans = result_attack["bd_train"]
visual_dataset = generate_bd_dataset(
bd_train_with_trans, args.target_class, selected_classes, max_num_samples=args.n_sub)
elif args.visual_dataset == 'bd_test':
bd_test_with_trans = result_attack["bd_test"]
visual_dataset = generate_bd_dataset(
bd_test_with_trans, args.target_class, selected_classes, max_num_samples=args.n_sub)
else:
assert False, "Illegal vis_class"
print(
f'Create visualization dataset with \n \t Dataset: {args.visual_dataset} \n \t Number of samples: {len(visual_dataset)} \n \t Selected classes: {selected_classes}')
# Create data loader
data_loader = torch.utils.data.DataLoader(
visual_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False
)
# Create denormalization function
for trans_t in data_loader.dataset.wrap_img_transform.transforms:
if isinstance(trans_t, transforms.Normalize):
denormalizer = get_dataset_denormalization(trans_t)
# Load model
model_visual = generate_cls_model(args.model, args.num_classes)
if args.result_file_defense != "None":
save_path_defense = "./record/" + args.result_file_defense
visual_save_path = save_path_defense + "/visual"
result_defense = load_attack_result(
save_path_defense + "/defense_result.pt")
defense_method = args.result_file_defense.split('/')[-1]
if defense_method == 'fp':
model_visual.layer4[1].conv2 = torch.nn.Conv2d(
512, 512 - result_defense['index'], (3, 3), stride=1, padding=1, bias=False)
model_visual.linear = torch.nn.Linear(
(512 - result_defense['index'])*1, args.num_classes)
if defense_method == 'dbd':
backbone = get_network_dbd(args)
model_visual = LinearModel(
backbone, backbone.feature_dim, args.num_classes)
model_visual.load_state_dict(result_defense["model"])
print(f"Load model {args.model} from {args.result_file_defense}")
else:
model_visual.load_state_dict(result_attack["model"])
print(f"Load model {args.model} from {args.result_file_attack}")
model_visual.to(args.device)
# !!! Important to set eval mode !!!
model_visual.eval()
# make visual_save_path if not exist
os.mkdir(visual_save_path) if not os.path.exists(visual_save_path) else None
############ Activation Image ################
print('Plotting Activation Image')
# Choose layer for feature extraction
module_dict = dict(model_visual.named_modules())
target_layer = module_dict[args.target_layer_name]
print(f'Choose layer {args.target_layer_name} from model {args.model}')
# Get features
features, labels, poi_indicator = get_features(args, model_visual, target_layer, data_loader, reduction='sum')
total_neuron = features.shape[1]
if args.neuron_order == 'ordered':
target_sort = np.arange(total_neuron)
elif args.neuron_order == 'random':
target_sort = np.random.shuffle(np.arange(total_neuron))
else:
print(f'Illegal Neuron order: {args.neuron_order}. Use "ordered" instead')
target_sort = np.arange(total_neuron)
# get top activation images for each Neuron
top_indx=np.argsort(-features,axis=0)
# Choose some nurons to visualize
num_neuron = np.min([args.num_neuron,total_neuron])
num_image = args.num_image
fig, axes = plt.subplots(nrows=num_neuron, ncols=num_image, figsize=(4*num_image, 5*num_neuron))
for neu_i in range(num_neuron):
im = target_sort[neu_i]
for topi in range(num_image):
top_i = top_indx[topi,im]
ax = axes[neu_i, topi]
cnn_image = np.swapaxes(np.swapaxes(denormalizer(visual_dataset[top_i][0]).cpu().numpy(), 0, 1), 1, 2)
cnn_image = cnn_image.clip(0,1)
ax.imshow(cnn_image)
if poi_indicator[top_i]==1:
ax.set_title(f'Neuron {im}, Top-{topi}, Value {features[top_i,im]:.2f}',color = 'red')
else:
ax.set_title(f'Neuron {im}, Top-{topi}, Value {features[top_i,im]:.2f}',color = 'black')
plt.tight_layout()
plt.savefig(visual_save_path + f"/act_{args.visual_dataset}.png")
print(f'Save to {visual_save_path + f"/act_{args.visual_dataset}"}.png')