-
Notifications
You must be signed in to change notification settings - Fork 38
/
Normal_ResNet_HAM10000.py
355 lines (267 loc) · 11.6 KB
/
Normal_ResNet_HAM10000.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#=====================================================
# Centralized (normal) learning: ResNet18 on HAM10000
# Single program
# ====================================================
import os
import torch
from torch import nn
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
from pandas import DataFrame
import math
import pandas as pd
from sklearn.model_selection import train_test_split
from PIL import Image
from glob import glob
import random
import numpy as np
import time
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
SEED = 1234
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
if torch.cuda.is_available():
torch.backends.cudnn.deterministic = True
print(torch.cuda.get_device_name(0))
#===================================================================
program = "Normal Learning ResNet18 on HAM10000"
print(f"---------{program}----------")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#=============================================================================
# Data loading
#=============================================================================
df = pd.read_csv('data/HAM10000_metadata.csv')
print(df.head())
lesion_type = {
'nv': 'Melanocytic nevi',
'mel': 'Melanoma',
'bkl': 'Benign keratosis-like lesions ',
'bcc': 'Basal cell carcinoma',
'akiec': 'Actinic keratoses',
'vasc': 'Vascular lesions',
'df': 'Dermatofibroma'
}
# merging both folders of HAM1000 dataset -- part1 and part2 -- into a single directory
imageid_path = {os.path.splitext(os.path.basename(x))[0]: x
for x in glob(os.path.join("data", '*', '*.jpg'))}
df['path'] = df['image_id'].map(imageid_path.get)
df['cell_type'] = df['dx'].map(lesion_type.get)
df['target'] = pd.Categorical(df['cell_type']).codes
print(df['cell_type'].value_counts())
print(df['target'].value_counts())
#==============================================================
# Custom dataset prepration in Pytorch format
class SkinData(Dataset):
def __init__(self, df, transform = None):
self.df = df
self.transform = transform
def __len__(self):
return len(self.df)
def __getitem__(self, index):
X = Image.open(self.df['path'][index]).resize((64, 64))
y = torch.tensor(int(self.df['target'][index]))
if self.transform:
X = self.transform(X)
return X, y
#=============================================================================
# Train-test split
train, test = train_test_split(df, test_size = 0.2)
train = train.reset_index()
test = test.reset_index()
#=============================================================================
# Data preprocessing
#=============================================================================
# Data preprocessing: Transformation
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
train_transforms = transforms.Compose([transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.Pad(3),
transforms.RandomRotation(10),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize(mean = mean, std = std)
])
test_transforms = transforms.Compose([
transforms.Pad(3),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize(mean = mean, std = std)
])
dataset_train = SkinData(train, transform = train_transforms)
dataset_test = SkinData(test, transform = test_transforms)
train_iterator = DataLoader(dataset_train, shuffle = True, batch_size = 256)
test_iterator = DataLoader(dataset_test, batch_size = 256)
print(f'Number of training examples: {len(train)}')
print(f'Number of testing examples: {len(test)}')
for x, y in train_iterator:
print("shape of x = ", x.shape)
print(type(x))
break
#=============================================================================
# Model definition: ResNet18
#=============================================================================
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet18(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet18, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
net_glob = ResNet18(BasicBlock, [2, 2, 2, 2], 7) # Class labels for HAM10000 = 7
if torch.cuda.device_count() > 1:
print("We use",torch.cuda.device_count(), "GPUs")
net_glob = nn.DataParallel(net_glob) # to use the multiple GPUs
net_glob.to(device)
print(net_glob)
#=============================================================================
# ML Training and Testing
#=============================================================================
def calculate_accuracy(fx, y):
preds = fx.max(1, keepdim=True)[1]
correct = preds.eq(y.view_as(preds)).sum()
acc = correct.float()/preds.shape[0]
return acc
#==========================================================================================================================
def train(model, device, iterator, optimizer, criterion):
epoch_loss = 0
epoch_acc = 0
model.train()
ell = len(iterator)
for (x, y) in iterator:
x = x.to(device)
y = y.to(device)
optimizer.zero_grad() # initialize gradients to zero
# ------------- Forward propagation ----------
fx = model(x)
loss = criterion(fx, y)
acc = calculate_accuracy (fx , y)
# -------- Backward propagation -----------
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / ell, epoch_acc / ell
def evaluate(model, device, iterator, criterion):
epoch_loss = 0
epoch_acc = 0
model.eval()
ell = len(iterator)
with torch.no_grad():
for (x,y) in iterator:
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
fx = model(x)
loss = criterion(fx, y)
acc = calculate_accuracy (fx , y)
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss/ell, epoch_acc/ell
# =======================================================================================
epochs = 200
LEARNING_RATE = 0.0001
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net_glob.parameters(), lr = LEARNING_RATE)
loss_train_collect = []
loss_test_collect = []
acc_train_collect = []
acc_test_collect = []
start_time = time.time()
for epoch in range(epochs):
train_loss, train_acc = train(net_glob, device, train_iterator, optimizer, criterion)
#print(f'Train completed - {epoch} Epoch")
test_loss, test_acc = evaluate(net_glob, device, test_iterator, criterion)
#print(f'Test completed - {epoch} Epoch")
loss_train_collect.append(train_loss)
loss_test_collect.append(test_loss)
acc_train_collect.append(train_acc)
acc_test_collect.append(test_acc)
prRed(f'Train => Epoch: {epoch} \t Acc: {train_acc*100:05.2f}% \t Loss: {train_loss:.3f}')
prGreen(f'Test => \t Acc: {test_acc*100:05.2f}% \t Loss: {test_loss:.3f}')
elapsed = (time.time() - start_time)/60
print(f'Total Training Time: {elapsed:.2f} min')
#===================================================================================
print("Training and Evaluation completed!")
#===============================================================================
# Save output data to .excel file (we use for comparision plots)
round_process = [i for i in range(1, len(acc_train_collect)+1)]
df = DataFrame({'round': round_process,'acc_train':acc_train_collect, 'acc_test':acc_test_collect})
file_name = program+".xlsx"
df.to_excel(file_name, sheet_name= "v1_test", index = False)
#=============================================================================
# Program Completed
#=============================================================================