-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
183 lines (168 loc) · 8.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from pytorch_lightning import loggers as pl_loggers
import argparse
from data.depth_datamodule import DepthDataModule
from models.depth_model import DepthEstimationModel
from models.gan_model import GAN
import glob
import os
import shutil
import matplotlib.pyplot as plt
plt.rcParams["font.family"] = "Times New Roman"
plt.rcParams.update({'font.size': "26"})
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("mode", type=str, choices=["gan", "synth"])
parser.add_argument("stage", type=str, choices=["train", "test"])
parser.add_argument('--gen-gan-data', dest='gen_gan_data', action='store_true')
parser.add_argument('--adapt-synth', dest='adapt_synth', action='store_true')
parser.add_argument('--enable-res-transfer', dest="res_transfer", action='store_true')
parser.add_argument('--plot-graph', dest="plot_graph", action='store_true')
parser.add_argument('--disable-plot-captions', dest="plot_captions", action='store_false')
parser.add_argument('--lr-d', dest="lr_d", default=5e-5, type=float)
parser.add_argument('--lr-g', dest="lr_g", default=5e-6, type=float)
parser.add_argument('--img-disc-factor', dest="img_disc_factor", type=float, default=0)
parser.add_argument('--p', dest="p", type=float, default=0)
parser.add_argument('--pickup_ckpt', type=str)
parser.add_argument('--adaptive_gate', dest='adaptive_gate', action='store_true')
parser.add_argument('--gpu', type=int, default=-1)
parser.add_argument('--imageGAN', action='store_true', help='disable patches for discriminator')
parser.set_defaults(gen_gan_data=False, adapt_synth=False, plot_graph=False, adaptive_gate=False,
imageGAN=False)
return parser.parse_args()
def save_python_files(target_dir):
source_dir = "."
source_path = source_dir+"/**/*.py"
py_files = glob.glob(source_path, recursive=True)
if len(py_files) > 0:
if os.path.exists(target_dir):
shutil.rmtree(target_dir)
os.makedirs(target_dir)
for file in py_files:
filename = os.path.basename(file)
shutil.copyfile(file, target_dir+"/"+filename)
else:
raise Exception("No files to save for training snapshot")
if __name__ == "__main__":
args = parse_args()
annotations_path = "../annotations"
mode = args.mode
generate_gan_data = args.gen_gan_data
gan_data_dir = "../datasets/gan_data"
dataset_dir = "../datasets"
log_plot = False # plot depth maps in log representation or not
# the following values are redefined lower on. This should be done cleaner.
batch_size = 0
logging_dir = ''
accumulate_grad_batches = 0
trainer_dict = {
'limit_val_batches': 200,
'accelerator': "gpu",
'devices': 1, # so that the dataset validation is only checked from one device
'gpus': [args.gpu] if args.gpu != -1 else -1,
'strategy': 'ddp', # use this strategy even for 1 node because matplotlib is used during training
'resume_from_checkpoint': args.pickup_ckpt
}
if mode == "synth":
logging_dir = "../lightning_logs/depth"
trainer_dict['max_epochs'] = 500
batch_size = 32
accumulate_grad_batches = 4
if args.stage == "train":
trainer_dict['val_check_interval'] = 1
monitor = "val_rmse"
del trainer_dict["limit_val_batches"]
reduce_lr_patience = 5
early_stop_patience = 15
trainer_dict['max_epochs'] = 50
checkpoint_callback = ModelCheckpoint(monitor=monitor, save_top_k=5)
early_stop_callback = EarlyStopping(monitor=monitor, patience=early_stop_patience)
trainer_dict['callbacks'] = [checkpoint_callback, early_stop_callback]
elif mode == "gan":
warmup_steps = 0
logging_dir = f"../lightning_logs/gan/{'gated' if args.res_transfer else 'vanilla'}" \
f"{'_adaptive' if args.adaptive_gate else ''}"
batch_size = 25
accumulate_grad_batches = 4
if args.stage == "train":
trainer_dict['max_steps'] = 200000
trainer_dict['val_check_interval'] = 100
unadapted_model = "../lightning_logs/depth/cyst/1/lightning_logs/version_17/checkpoints/" \
"epoch=22-step=52923.ckpt"
checkpoint_callback = ModelCheckpoint(every_n_epochs=2)
trainer_dict['callbacks'] = [checkpoint_callback]
batch_size = 40
accumulate_grad_batches = 3
elif args.stage == "test":
batch_size = 1
ckpt = None
dm = DepthDataModule(batch_size, annotations_path, mode,
dataset_dir=dataset_dir,
generate_data=generate_gan_data)
logging_dir = logging_dir + "/cyst/1"
logger = pl_loggers.TensorBoardLogger(logging_dir)
logger.experiment.add_scalar("e_batch_size", accumulate_grad_batches*batch_size)
# save_python_files(target_dir = "../code-snapshots-new/"+ mode + "-" + str(logger.version))
trainer = pl.Trainer(logger=logger, accumulate_grad_batches=accumulate_grad_batches, **trainer_dict)
if mode == "synth":
if args.stage == "train":
model = DepthEstimationModel(ckpt,
lr_scheduler_patience=reduce_lr_patience,
lr_scheduler_monitor=monitor,
accumulate_grad_batches=accumulate_grad_batches,
adaptive_gating=args.adaptive_gate)
if args.plot_graph is True:
logger.experiment.add_graph(model())
trainer.validate(model, dm)
trainer.fit(model, dm)
trainer.test(model, dm)
elif args.stage == "test":
synth_model = DepthEstimationModel.load_from_checkpoint("../lightning_logs/depth/cyst/default/version_5/"
"checkpoints/epoch=44-step=103319.ckpt")
trainer.test(synth_model, dm)
elif mode == "gan":
if args.stage == "train":
unadapted_model = DepthEstimationModel.load_from_checkpoint(unadapted_model)
gan_model = GAN(depth_model=unadapted_model,
res_transfer=args.res_transfer,
image_gan=args.imageGAN,
adaptive_gating=args.adaptive_gate,
warmup_steps=warmup_steps,
lr_d=args.lr_d,
lr_g=args.lr_g,
img_discriminator_factor=args.img_disc_factor,
accum_grad_batches=accumulate_grad_batches,
res_loss_factor=args.p)
trainer.validate(gan_model, dm)
trainer.fit(gan_model, dm)
trainer.test(gan_model, dm)
elif args.stage == "test":
# model_1 = "../lightning_logs/gan/cyst/default/version_14/checkpoints/epoch=19-step=6519.ckpt"
model_2 = "../lightning_logs/gan/gated_adaptive/cyst/1/lightning_logs/version_18/checkpoints/" \
"epoch=51-step=30335.ckpt"
model = GAN.load_from_checkpoint(model_2,
res_transfer=args.res_transfer,
adaptive_gating=args.adaptive_gate)
trainer.test(model, dm)
elif mode == "test-gan":
# test adapted model
print("Testing Adapted Model")
adapted_model = GAN.load_from_checkpoint("../lightning_logs/gan/gated_adaptive/cyst/1/lightning_logs/"
"version_18/checkpoints/epoch=51-step=30335.ckpt")
depth_dm = DepthDataModule(batch_size, annotations_path, mode,
dataset_dir=dataset_dir,
generate_data=generate_gan_data)
trainer.test(adapted_model, depth_dm)
# print("Testing Un-Adapted Model")
# unadapted_depth_model = DepthEstimationModel.load_from_checkpoint("../lightning_logs/depth/default/epoch=9-step=6149.ckpt")
# unadapted_model = GAN(unadapted_depth_model)
# cycle_gan_data_dir = "../datasets/cycle_gan_data"
# # TODO reset logger
# depth_dm = DepthDataModule(batch_size=batch_size,
# annotations_dir=annotations_path,
# synth_data_dir=synth_data_dir,
# gan_data_dir=cycle_gan_data_dir,
# generate_data=False)
# trainer.test(unadapted_model, depth_dm)