End of file reached while searching for input! ######## openvolumemesh info ######### #vertices: 2275 #edges: 13240 #faces: 20730 #cells: 9764 ###################################### No prescribed feature tags found. Set boundary faces to feature faces and edges w.r.t. dihedral angle threshold 70 to feature edges. ###Splitting w.r.t. feature... #####Solving for Spherical Harmonic Coefficients... #####Start Iterating... iteration 0 energy: 2504.61 iteration 1 energy: 2420.9 iteration 2 energy: 2357.76 iteration 3 energy: 2301.51 iteration 4 energy: 2254.38 iteration 5 energy: 2219.42 iteration 6 energy: 2192.52 iteration 7 energy: 2168.09 iteration 8 energy: 2142.39 iteration 9 energy: 2115 iteration 10 energy: 2088.92 iteration 11 energy: 2065.17 iteration 12 energy: 2041.18 iteration 13 energy: 2016.73 iteration 14 energy: 1994.5 iteration 15 energy: 1974 iteration 16 energy: 1953.28 iteration 17 energy: 1932.3 iteration 18 energy: 1913.38 iteration 19 energy: 1898.31 iteration 20 energy: 1885.65 iteration 21 energy: 1873.34 iteration 22 energy: 1860.42 iteration 23 energy: 1847.87 iteration 24 energy: 1837.55 iteration 25 energy: 1829.46 iteration 26 energy: 1822.63 iteration 27 energy: 1816.38 iteration 28 energy: 1810.37 iteration 29 energy: 1804.42 iteration 30 energy: 1798.58 iteration 31 energy: 1793.04 iteration 32 energy: 1788.06 iteration 33 energy: 1783.64 iteration 34 energy: 1779.67 iteration 35 energy: 1776 iteration 36 energy: 1772.49 iteration 37 energy: 1769.1 iteration 38 energy: 1765.72 iteration 39 energy: 1762.37 iteration 40 energy: 1759.14 iteration 41 energy: 1756.18 iteration 42 energy: 1753.64 iteration 43 energy: 1751.58 iteration 44 energy: 1749.96 iteration 45 energy: 1748.69 iteration 46 energy: 1747.68 iteration 47 energy: 1746.86 iteration 48 energy: 1746.19 iteration 49 energy: 1745.67 iteration 50 energy: 1745.24 iteration 51 energy: 1744.86 iteration 52 energy: 1744.54 iteration 53 energy: 1744.27 iteration 54 energy: 1744.03 iteration 55 energy: 1743.84 iteration 56 energy: 1743.67 iteration 57 energy: 1743.51 iteration 58 energy: 1743.35 iteration 59 energy: 1743.2 iteration 60 energy: 1743.05 iteration 61 energy: 1742.9 iteration 62 energy: 1742.74 iteration 63 energy: 1742.57 iteration 64 energy: 1742.4 iteration 65 energy: 1742.18 iteration 66 energy: 1741.97 iteration 67 energy: 1741.71 iteration 68 energy: 1741.41 iteration 69 energy: 1741.08 iteration 70 energy: 1740.7 iteration 71 energy: 1740.27 iteration 72 energy: 1739.81 iteration 73 energy: 1739.35 iteration 74 energy: 1738.94 iteration 75 energy: 1738.6 iteration 76 energy: 1738.34 iteration 77 energy: 1738.17 iteration 78 energy: 1738.06 iteration 79 energy: 1737.96 iteration 80 energy: 1737.96 Stop iteration due to convergence after 80 of 500 iterations. Field generation 5500 ms, n = 3 ├ SpH Projection 139 ms, n = 81 ├ Linear system setup 2527 ms, n = 81 │ ├ Smoothness term 1583 ms, n = 81 │ ├ Normal constraints 178 ms, n = 81 │ ├ Full constraints 0 ms, n = 81 │ ├ Local linearisation 747 ms, n = 80 │ ╰ (unaccounted) 17 ms ├ Linear system solve 2672 ms, n = 81 ╰ (unaccounted) 161 ms #####Generating singular graph... splitting (edge length ratio: 0.6)... performed 691 edge split Performed 665 face split interpolating for cell quaternions... compute transitions... Tetmesh cells: 18237 Tetmesh faces: 37705 Tetmesh edges: 23612 Tetmesh vertices: 4145 Min/Max cell volume: 0.0003828471664531803023 / 5.437474463805225255. Min volume cell: 15890 Min/Max cell dihedral angle: 4.550134206201103204 / 170.7187337193283554 Max dihedral angle cell: 12682 Preprocessing quaternions... Checking face alignment error: Done! Done! compute transitions... ####Preprocessing... ####Fix misalignment at feature edges ... ####Fix misalignment at feature face sectors ... ####Pushing boundary singular edges which are not on feature arcs to interior ... ####Removing singular triangles ... ######Pipeline (Quaternion) iter 0 ... ####Fixing local invalid at first stage... ####Fix non-meshable footprint on ff ... ####Fix complex singular edges non ff ... ########Fix invalid nodes on boundary... ########Fix invalid singular vertices on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained zero sectors1... ########Push sgv to interior... ####Fixed! Min/Max cell volume: 0.0003828471664531803023 / 5.437474463805225255. Min volume cell: 15890 Min/Max cell volume: 0.00100063651835194823 / 5.437474463805225255. Min volume cell: 13248 ***** optimize via Newton (infeasible start version) with 1260 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 59179.848272172734) using linear solver Umfpack iter: 0, feasible, f(x) = 271.12127534638267, t = 0.216 (tmax=1) _clamped_, res_primal = 0, res_dual = 36372.500032073469, regularization = 0, eps = [Newton decrement] = 842.30591895565396, KKT residual^2 = 3.2805866093788243e-27 iter: 1, feasible, f(x) = 232.4729678175573, t = 0.077759999999999996 (tmax=1) _clamped_, res_primal = 0, res_dual = 30935.282480769209, regularization = 0, eps = [Newton decrement] = 517.1215629057167, KKT residual^2 = 1.9894583422613906e-27 iter: 2, feasible, f(x) = 199.64897896309219, t = 0.077759999999999996 (tmax=1) _clamped_, res_primal = 0, res_dual = 26309.72375133467, regularization = 0.001, eps = [Newton decrement] = 439.19161557185828, KKT residual^2 = 1.5690461388936036e-27 iter: 3, feasible, f(x) = 171.79726562999957, t = 0.077759999999999996 (tmax=1) _clamped_, res_primal = 0, res_dual = 22375.085206678999, regularization = 0.01, eps = [Newton decrement] = 372.65133794197578, KKT residual^2 = 1.4183132264112704e-27 iter: 4, feasible, f(x) = 148.26951023868861, t = 0.077759999999999996 (tmax=1) _clamped_, res_primal = 0, res_dual = 19030.785746102483, regularization = 0.10000000000000001, eps = [Newton decrement] = 314.75104832151607, KKT residual^2 = 9.0832918246411487e-28 iter: 5, feasible, f(x) = 128.89314402451487, t = 0.077759999999999996 (tmax=1) _clamped_, res_primal = 0, res_dual = 16203.430694714765, regularization = 1, eps = [Newton decrement] = 259.00427364277152, KKT residual^2 = 6.4362864828340127e-28 iter: 6, feasible, f(x) = 114.91588146316261, t = 0.077759999999999996 (tmax=1) _clamped_, res_primal = 0, res_dual = 14029.314633029237, regularization = 10, eps = [Newton decrement] = 185.90535983797722, KKT residual^2 = 5.9605364563637503e-28 iter: 7, feasible, f(x) = 105.45678762240455, t = 0.12959999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 12329.997311959176, regularization = 100, eps = [Newton decrement] = 75.124965704242058, KKT residual^2 = 5.4298376088329352e-28 iter: 8, feasible, f(x) = 91.733109601854878, t = 0.216 (tmax=1) _clamped_, res_primal = 0, res_dual = 9984.9441732763171, regularization = 100, eps = [Newton decrement] = 66.657730980505875, KKT residual^2 = 1.3835697569759386e-27 iter: 9, feasible, f(x) = 84.855691696094055, t = 0.12959999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 8815.7289315037087, regularization = 100, eps = [Newton decrement] = 54.587134480530267, KKT residual^2 = 1.8985578953084657e-27 iter: 10, feasible, f(x) = 81.152992628615436, t = 0.077759999999999996 (tmax=1) _clamped_, res_primal = 0, res_dual = 8202.2130637156661, regularization = 100, eps = [Newton decrement] = 48.413858909931427, KKT residual^2 = 4.36902186140436e-27 iter: 11, feasible, f(x) = 79.552752463654841, t = 0.216 (tmax=1) _clamped_, res_primal = 0, res_dual = 7851.8863023408685, regularization = 1000, eps = [Newton decrement] = 7.4767246593815759, KKT residual^2 = 4.2360470746781551e-28 iter: 12, feasible, f(x) = 72.634060381677074, t = 1 (tmax=1), res_primal = 0, res_dual = 9726.683095931674, regularization = 1000, eps = [Newton decrement] = 7.2006345938792258, KKT residual^2 = 6.0879826528340955e-28 iter: 13, feasible, f(x) = 68.640136472658298, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 12725.655370869277, regularization = 500, eps = [Newton decrement] = 11.37324795929276, KKT residual^2 = 3.1761516533828887e-24 iter: 14, feasible, f(x) = 65.025804141336721, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 31653.384002599309, regularization = 500, eps = [Newton decrement] = 10.289274902666733, KKT residual^2 = 2.9409980594753992e-23 iter: 15, feasible, f(x) = 61.753143895707574, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 337522.37296133983, regularization = 500, eps = [Newton decrement] = 9.3156255668787225, KKT residual^2 = 7.5845113055303189e-23 iter: 16, feasible, f(x) = 58.791159534475668, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 2355883.233321866, regularization = 500, eps = [Newton decrement] = 8.4272509767399075, KKT residual^2 = 1.671598307760806e-20 iter: 17, feasible, f(x) = 54.378208621238237, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 3108800.0834606551, regularization = 500, eps = [Newton decrement] = 7.6495224765317058, KKT residual^2 = 4.420535409733686e-19 iter: 18, feasible, f(x) = 50.614520910889226, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 2049672.7574062464, regularization = 500, eps = [Newton decrement] = 6.5215657417354054, KKT residual^2 = 1.7836186434681092e-18 iter: 19, feasible, f(x) = 49.429253110752107, t = 0.216 (tmax=1) _clamped_, res_primal = 0, res_dual = 1685240.9837295872, regularization = 500, eps = [Newton decrement] = 5.5634257329873655, KKT residual^2 = 8.8997345183260083e-19 iter: 20, feasible, f(x) = 46.398137891429862, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 6204114.8163767373, regularization = 500, eps = [Newton decrement] = 5.244778269737405, KKT residual^2 = 5.9243291414039881e-19 iter: 21, feasible, f(x) = 43.79749253552535, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 1454842.5267049719, regularization = 500, eps = [Newton decrement] = 4.4926149719492035, KKT residual^2 = 1.1726973652402389e-18 iter: 22, feasible, f(x) = 41.545780465724064, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 7589639.6773851663, regularization = 500, eps = [Newton decrement] = 3.8875325076366898, KKT residual^2 = 9.2967129756865379e-19 iter: 23, feasible, f(x) = 40.357073139128183, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 3042586.0783454222, regularization = 500, eps = [Newton decrement] = 3.3690665007839735, KKT residual^2 = 7.1798273101226151e-18 iter: 24, feasible, f(x) = 39.264894701700747, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 2098292.1446521906, regularization = 500, eps = [Newton decrement] = 3.0987597785680565, KKT residual^2 = 1.9959451790703492e-18 iter: 25, feasible, f(x) = 38.260669608556938, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 1804727.4848220614, regularization = 500, eps = [Newton decrement] = 2.8457350617477317, KKT residual^2 = 2.5465864575802867e-19 iter: 26, feasible, f(x) = 37.335298497585548, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 1687171.6052314048, regularization = 500, eps = [Newton decrement] = 2.621402322385356, KKT residual^2 = 4.810549789672097e-19 iter: 27, feasible, f(x) = 35.93081468639069, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 3976595.173774648, regularization = 500, eps = [Newton decrement] = 2.4185625403758313, KKT residual^2 = 3.3834171992244911e-19 iter: 28, feasible, f(x) = 34.699389560234067, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 2092328.6250466607, regularization = 500, eps = [Newton decrement] = 2.1169410642157698, KKT residual^2 = 8.3566549881103524e-19 iter: 29, feasible, f(x) = 33.612388706824419, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 2897580.0784300612, regularization = 500, eps = [Newton decrement] = 1.8666966714359641, KKT residual^2 = 4.3626020654225699e-19 iter: 30, feasible, f(x) = 32.037885866458041, t = 1 (tmax=1), res_primal = 0, res_dual = 7749823.6746003916, regularization = 500, eps = [Newton decrement] = 1.6536354895889196, KKT residual^2 = 8.5596743213610351e-19 iter: 31, feasible, f(x) = 30.611255055414283, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 340032.44192382932, regularization = 250, eps = [Newton decrement] = 2.493153220479138, KKT residual^2 = 2.8785481924838754e-17 iter: 32, feasible, f(x) = 29.892163155081764, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 702116.93782470049, regularization = 250, eps = [Newton decrement] = 2.0534925721635258, KKT residual^2 = 2.3384234855270901e-20 iter: 33, feasible, f(x) = 29.25012939041655, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 716204.87605897035, regularization = 250, eps = [Newton decrement] = 1.8318437432215866, KKT residual^2 = 1.6120468121548561e-19 iter: 34, feasible, f(x) = 28.307078154361577, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 1973281.5201305475, regularization = 250, eps = [Newton decrement] = 1.6410576752191435, KKT residual^2 = 1.7770839117391574e-19 iter: 35, feasible, f(x) = 27.020484529665183, t = 1 (tmax=1), res_primal = 0, res_dual = 363112.51295810542, regularization = 250, eps = [Newton decrement] = 1.3774972235146734, KKT residual^2 = 2.4229111252931386e-19 iter: 36, feasible, f(x) = 26.374198907232905, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 297502.4646139855, regularization = 125, eps = [Newton decrement] = 1.862703230900332, KKT residual^2 = 1.2951328113512763e-19 iter: 37, feasible, f(x) = 25.472139705173181, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 1035708.9565459165, regularization = 125, eps = [Newton decrement] = 1.596422459971147, KKT residual^2 = 3.3353311387370773e-20 iter: 38, feasible, f(x) = 24.334709278529413, t = 1 (tmax=1), res_primal = 0, res_dual = 54153.169820715957, regularization = 125, eps = [Newton decrement] = 1.2458520045682631, KKT residual^2 = 5.2731313109270598e-19 iter: 39, feasible, f(x) = 23.813542768772226, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 310272.64086390927, regularization = 62.5, eps = [Newton decrement] = 1.5120697037796011, KKT residual^2 = 5.3124442355385998e-22 iter: 40, feasible, f(x) = 23.103750079181626, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 60069.330903295042, regularization = 62.5, eps = [Newton decrement] = 1.2634144545325239, KKT residual^2 = 1.0713226613803261e-19 iter: 41, feasible, f(x) = 22.766890123250743, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 159668.8207719209, regularization = 62.5, eps = [Newton decrement] = 0.9700402278841096, KKT residual^2 = 1.3867724679460455e-21 iter: 42, feasible, f(x) = 22.292588190846505, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 238570.7222710858, regularization = 62.5, eps = [Newton decrement] = 0.83738159877702134, KKT residual^2 = 1.2461649373013211e-20 iter: 43, feasible, f(x) = 21.674569736910701, t = 1 (tmax=1), res_primal = 0, res_dual = 225056.98417643466, regularization = 62.5, eps = [Newton decrement] = 0.67004489819822233, KKT residual^2 = 1.0078431786734083e-19 iter: 44, feasible, f(x) = 20.889212555864809, t = 1 (tmax=1), res_primal = 0, res_dual = 6865.0129251531971, regularization = 31.25, eps = [Newton decrement] = 0.86904657139826347, KKT residual^2 = 2.0325420447572795e-19 iter: 45, feasible, f(x) = 20.539542607095971, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 24786.819136364033, regularization = 15.625, eps = [Newton decrement] = 1.0158390253777216, KKT residual^2 = 1.5845147797594614e-22 iter: 46, feasible, f(x) = 20.246297707181327, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 23406.712325385015, regularization = 15.625, eps = [Newton decrement] = 0.84850203323492146, KKT residual^2 = 9.2105239026596852e-22 iter: 47, feasible, f(x) = 19.842413989252925, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 55892.40498499589, regularization = 15.625, eps = [Newton decrement] = 0.71854526090272697, KKT residual^2 = 2.3146993116720934e-21 iter: 48, feasible, f(x) = 19.336976379017642, t = 1 (tmax=1), res_primal = 0, res_dual = 162291.16304497828, regularization = 15.625, eps = [Newton decrement] = 0.55657144373081502, KKT residual^2 = 6.9158924450820841e-21 iter: 49, feasible, f(x) = 18.966922187749169, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 54547.395209049682, regularization = 7.8125, eps = [Newton decrement] = 0.66302788394728651, KKT residual^2 = 1.0637098987235086e-19 iter: 50, feasible, f(x) = 18.520047914192528, t = 1 (tmax=1), res_primal = 0, res_dual = 25201.746938350785, regularization = 7.8125, eps = [Newton decrement] = 0.4978245552641416, KKT residual^2 = 3.1539632569509531e-21 iter: 51, feasible, f(x) = 18.03135824309399, t = 1 (tmax=1), res_primal = 0, res_dual = 10049.645990704743, regularization = 3.90625, eps = [Newton decrement] = 0.55717407356660986, KKT residual^2 = 2.1606765842304158e-21 iter: 52, feasible, f(x) = 17.729868520793225, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 4464.5800048361589, regularization = 1.953125, eps = [Newton decrement] = 0.54857849894593858, KKT residual^2 = 3.7350381716415389e-22 iter: 53, feasible, f(x) = 17.600120564759752, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 2501.4848166124693, regularization = 1.953125, eps = [Newton decrement] = 0.37894101638383859, KKT residual^2 = 3.485422167559246e-24 iter: 54, feasible, f(x) = 17.340136957362962, t = 1 (tmax=1), res_primal = 0, res_dual = 1228.6257866753369, regularization = 1.953125, eps = [Newton decrement] = 0.29913138860412641, KKT residual^2 = 3.8436928408711177e-24 iter: 55, feasible, f(x) = 17.27882287323569, t = 0.216 (tmax=1) _clamped_, res_primal = 0, res_dual = 831.4190636878991, regularization = 0.9765625, eps = [Newton decrement] = 0.29448261120444663, KKT residual^2 = 2.099205940048589e-25 iter: 56, feasible, f(x) = 17.142201535365629, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 325.72944719004346, regularization = 0.9765625, eps = [Newton decrement] = 0.2496615280070848, KKT residual^2 = 3.1585655368928113e-25 iter: 57, feasible, f(x) = 16.995463431342614, t = 1 (tmax=1), res_primal = 0, res_dual = 78.866092458060137, regularization = 0.9765625, eps = [Newton decrement] = 0.16822755344073781, KKT residual^2 = 2.0236259614339123e-26 iter: 58, feasible, f(x) = 16.863640587099855, t = 1 (tmax=1), res_primal = 0, res_dual = 65.006543967943912, regularization = 0.48828125, eps = [Newton decrement] = 0.15723914668797545, KKT residual^2 = 4.0819610200938392e-27 iter: 59, feasible, f(x) = 16.798945677414803, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 25.277887306822521, regularization = 0.244140625, eps = [Newton decrement] = 0.12113584423670931, KKT residual^2 = 1.3836017815724628e-27 iter: 60, feasible, f(x) = 16.739481911639114, t = 1 (tmax=1), res_primal = 0, res_dual = 9.2598730798222242, regularization = 0.244140625, eps = [Newton decrement] = 0.073078356325981531, KKT residual^2 = 1.0992413992437356e-27 iter: 61, feasible, f(x) = 16.702259608766244, t = 1 (tmax=1), res_primal = 0, res_dual = 2.2187533354564501, regularization = 0.1220703125, eps = [Newton decrement] = 0.046344364835754936, KKT residual^2 = 7.0988423960312284e-28 iter: 62, feasible, f(x) = 16.681630739488288, t = 1 (tmax=1), res_primal = 0, res_dual = 1.4273710877402275, regularization = 0.06103515625, eps = [Newton decrement] = 0.025418921035575678, KKT residual^2 = 4.0369183324102526e-28 iter: 63, feasible, f(x) = 16.670135771860146, t = 1 (tmax=1), res_primal = 0, res_dual = 0.24854889131327973, regularization = 0.030517578125, eps = [Newton decrement] = 0.013545538647605776, KKT residual^2 = 1.8953942696678741e-28 iter: 64, feasible, f(x) = 16.662614533275821, t = 1 (tmax=1), res_primal = 0, res_dual = 0.16022310763876774, regularization = 0.0152587890625, eps = [Newton decrement] = 0.0085087898950647212, KKT residual^2 = 2.7915025547587553e-28 iter: 65, feasible, f(x) = 16.657325467904055, t = 1 (tmax=1), res_primal = 0, res_dual = 0.077852059559478548, regularization = 0.00762939453125, eps = [Newton decrement] = 0.0059297040206267053, KKT residual^2 = 2.7098047810694449e-29 iter: 66, feasible, f(x) = 16.653638298125781, t = 1 (tmax=1), res_primal = 0, res_dual = 0.046426782749432585, regularization = 0.003814697265625, eps = [Newton decrement] = 0.0040667619537760238, KKT residual^2 = 1.2510835308238643e-28 iter: 67, feasible, f(x) = 16.650902832852811, t = 1 (tmax=1), res_primal = 0, res_dual = 0.031893968970055989, regularization = 0.0019073486328125, eps = [Newton decrement] = 0.0029894751854600493, KKT residual^2 = 7.8149256953420763e-29 iter: 68, feasible, f(x) = 16.648964358026738, t = 1 (tmax=1), res_primal = 0, res_dual = 0.014874506624746531, regularization = 0, eps = [Newton decrement] = 0.0021584352515137944, KKT residual^2 = 4.6720612917939338e-29 iter: 69, feasible, f(x) = 16.647782658933746, t = 1 (tmax=1), res_primal = 0, res_dual = 0.0046225014127152042, regularization = 0, eps = [Newton decrement] = 0.0013466559478956717, KKT residual^2 = 2.1169222754358386e-29 iter: 70, feasible, f(x) = 16.647111084926451, t = 1 (tmax=1), res_primal = 0, res_dual = 0.0023973548399736353, regularization = 0, eps = [Newton decrement] = 0.00075694540715374884, KKT residual^2 = 8.6818773258687889e-30 iter: 71, feasible, f(x) = 16.646688572711621, t = 1 (tmax=1), res_primal = 0, res_dual = 0.0013048027250964673, regularization = 0, eps = [Newton decrement] = 0.00046722480995385168, KKT residual^2 = 3.5726252374506554e-30 iter: 72, feasible, f(x) = 16.646411074855102, t = 1 (tmax=1), res_primal = 0, res_dual = 0.00075006375698360474, regularization = 0, eps = [Newton decrement] = 0.0003072613389306332, KKT residual^2 = 7.6317491797916111e-31 iter: 73, feasible, f(x) = 16.646235808232547, t = 1 (tmax=1), res_primal = 0, res_dual = 0.00043310536713519316, regularization = 0, eps = [Newton decrement] = 0.00019612357442643535, KKT residual^2 = 1.4492165853036491e-31 iter: 74, feasible, f(x) = 16.646131495143646, t = 1 (tmax=1), res_primal = 0, res_dual = 0.00024730673802403027, regularization = 0, eps = [Newton decrement] = 0.0001180209478787751, KKT residual^2 = 2.2068390807617769e-31 iter: 75, feasible, f(x) = 16.646072301900034, t = 1 (tmax=1), res_primal = 0, res_dual = 0.0001415375969329707, regularization = 0, eps = [Newton decrement] = 6.7479329920860375e-05, KKT residual^2 = 4.3596381480837771e-32 iter: 76, feasible, f(x) = 16.646039528405854, t = 1 (tmax=1), res_primal = 0, res_dual = 8.2223986270911446e-05, regularization = 0, eps = [Newton decrement] = 3.7482929810215833e-05, KKT residual^2 = 6.9871233514666322e-32 iter: 77, feasible, f(x) = 16.646021461709267, t = 1 (tmax=1), res_primal = 0, res_dual = 4.8717782202318861e-05, regularization = 0, eps = [Newton decrement] = 2.0664477505050285e-05, KKT residual^2 = 8.4147987998349411e-32 iter: 78, feasible, f(x) = 16.646011429469141, t = 1 (tmax=1), res_primal = 0, res_dual = 2.9419357993682357e-05, regularization = 0, eps = [Newton decrement] = 1.1456605538809943e-05, KKT residual^2 = 7.1710898587735911e-32 iter: 79, feasible, f(x) = 16.64600579073517, t = 1 (tmax=1), res_primal = 0, res_dual = 1.8055463183588109e-05, regularization = 0, eps = [Newton decrement] = 6.4243475272552269e-06, KKT residual^2 = 2.4318560781774991e-32 iter: 80, feasible, f(x) = 16.646002576204442, t = 1 (tmax=1), res_primal = 0, res_dual = 1.1229346352741403e-05, regularization = 0, eps = [Newton decrement] = 3.651984875910074e-06, KKT residual^2 = 9.7040796779845285e-32 iter: 81, feasible, f(x) = 16.646000713389927, t = 1 (tmax=1), res_primal = 0, res_dual = 7.063491795716912e-06, regularization = 0, eps = [Newton decrement] = 2.1087326888149023e-06, KKT residual^2 = 3.1683158572973771e-32 iter: 82, feasible, f(x) = 16.645999611750259, t = 1 (tmax=1), res_primal = 0, res_dual = 4.4909873750957125e-06, regularization = 0, eps = [Newton decrement] = 1.2411227140597644e-06, KKT residual^2 = 2.4758534085356651e-33 iter: 83, feasible, f(x) = 16.645998942785951, t = 1 (tmax=1), res_primal = 0, res_dual = 2.8887181716868395e-06, regularization = 0, eps = [Newton decrement] = 7.4880144559389872e-07, KKT residual^2 = 2.5556210739164944e-33 ######## NP-Timings ######## total time : 0.944813s total time NP : 0.743579s (78.7012 %) eval_f time : 0.04363s ( #evals: 276 -> avg 0.00016s ) eval_grad time: 0.02256s ( #evals: 85 -> avg 0.00027s, factor: 1.67867) eval_hess time: 0.67739s ( #evals: 84 -> avg 0.00806s, factor: 51.01096) solve_infeasible_start took 0.94488099999999997 s. Min/Max cell volume: 7.841324540021199406e-07 / 5.437474463805225255. Min volume cell: 9900 Min/Max cell volume: 7.841324540021199406e-07 / 5.437474463805225255. Min volume cell: 9900 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 1 ... ####Fixing local invalid at first stage... ####Fix complex singular edges non ff ... ########Fix invalid nodes on boundary... ########Fix invalid singular vertices on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained zero sectors1... ########Push sgv to interior... ####Fixed! Min/Max cell volume: 7.386148158803176006e-07 / 5.437474463805225255. Min volume cell: 15852 Min/Max cell volume: 7.841324540021199406e-07 / 5.437474463805225255. Min volume cell: 9900 ***** optimize via Newton (infeasible start version) with 936 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 371.27407684552986) using linear solver Umfpack iter: 0, feasible, f(x) = 15.640196068570704, t = 0.077759999999999996 (tmax=1) _clamped_, res_primal = 0, res_dual = 315.79897809739936, regularization = 0, eps = [Newton decrement] = 15.837538871839882, KKT residual^2 = 6.6890187710828412e-28 iter: 1, feasible, f(x) = 14.638223971345658, t = 0.077759999999999996 (tmax=1) _clamped_, res_primal = 0, res_dual = 268.62063819390812, regularization = 0.001, eps = [Newton decrement] = 13.401616626267884, KKT residual^2 = 7.8944069811653477e-28 iter: 2, feasible, f(x) = 13.27172760452155, t = 0.12959999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 203.47445514227221, regularization = 0.01, eps = [Newton decrement] = 11.26189689836359, KKT residual^2 = 7.77965785202287e-28 iter: 3, feasible, f(x) = 11.632333139064716, t = 0.216 (tmax=1) _clamped_, res_primal = 0, res_dual = 124.8411991428037, regularization = 0.01, eps = [Newton decrement] = 8.4951679241101949, KKT residual^2 = 1.2994622842465067e-27 iter: 4, feasible, f(x) = 10.631740551587159, t = 0.216 (tmax=1) _clamped_, res_primal = 0, res_dual = 76.487735036714383, regularization = 0.01, eps = [Newton decrement] = 5.1862377955565107, KKT residual^2 = 6.6854421464028957e-28 iter: 5, feasible, f(x) = 9.7096801499898469, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 30.910210509017926, regularization = 0.01, eps = [Newton decrement] = 3.1116153052802522, KKT residual^2 = 4.5269738685957522e-28 iter: 6, feasible, f(x) = 9.172077830885792, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 4.529523945729137, regularization = 0.01, eps = [Newton decrement] = 1.2721477045832061, KKT residual^2 = 1.9108974529007214e-28 iter: 7, feasible, f(x) = 9.0634542160839739, t = 1 (tmax=1), res_primal = 0, res_dual = 0.15766090427186058, regularization = 0.01, eps = [Newton decrement] = 0.20911506848330219, KKT residual^2 = 3.6200329458769473e-29 iter: 8, feasible, f(x) = 9.0604756964350965, t = 1 (tmax=1), res_primal = 0, res_dual = 0.01269150087100613, regularization = 0.0050000000000000001, eps = [Newton decrement] = 0.0043772156385110794, KKT residual^2 = 4.3747660947736482e-30 iter: 9, feasible, f(x) = 9.0598861458371438, t = 1 (tmax=1), res_primal = 0, res_dual = 0.0015417083688111679, regularization = 0.0025000000000000001, eps = [Newton decrement] = 0.00085233114357695979, KKT residual^2 = 4.2917221169637844e-30 iter: 10, feasible, f(x) = 9.0597585769205757, t = 1 (tmax=1), res_primal = 0, res_dual = 0.0003063300359890621, regularization = 0.00125, eps = [Newton decrement] = 0.00017909801892646029, KKT residual^2 = 1.2268260907419893e-30 iter: 11, feasible, f(x) = 9.0597246711196231, t = 1 (tmax=1), res_primal = 0, res_dual = 8.2423008187827905e-05, regularization = 0, eps = [Newton decrement] = 4.2718520361184399e-05, KKT residual^2 = 4.6343399847174757e-32 iter: 12, feasible, f(x) = 9.059711671421395, t = 1 (tmax=1), res_primal = 0, res_dual = 2.3427408266900773e-05, regularization = 0, eps = [Newton decrement] = 1.5769978176374241e-05, KKT residual^2 = 9.9942629397098823e-33 iter: 13, feasible, f(x) = 9.0597060565028968, t = 1 (tmax=1), res_primal = 0, res_dual = 6.9057011501966937e-06, regularization = 0, eps = [Newton decrement] = 6.7279387830617878e-06, KKT residual^2 = 8.440165667591553e-33 iter: 14, feasible, f(x) = 9.0597035028576887, t = 1 (tmax=1), res_primal = 0, res_dual = 2.1626671729313889e-06, regularization = 0, eps = [Newton decrement] = 3.0360758408023207e-06, KKT residual^2 = 1.8993495166569045e-33 iter: 15, feasible, f(x) = 9.0597023010668547, t = 1 (tmax=1), res_primal = 0, res_dual = 7.3754690697416151e-07, regularization = 0, eps = [Newton decrement] = 1.4207780261402256e-06, KKT residual^2 = 7.3868984089998987e-34 iter: 16, feasible, f(x) = 9.059701720926709, t = 1 (tmax=1), res_primal = 0, res_dual = 2.7813993075564321e-07, regularization = 0, eps = [Newton decrement] = 6.8281390932073496e-07, KKT residual^2 = 2.4149386934499126e-34 ######## NP-Timings ######## total time : 0.12372s total time NP : 0.09630s (77.83732 %) eval_f time : 0.00717s ( #evals: 57 -> avg 0.00013s ) eval_grad time: 0.00370s ( #evals: 18 -> avg 0.00021s, factor: 1.63388) eval_hess time: 0.08542s ( #evals: 17 -> avg 0.00502s, factor: 39.93052) solve_infeasible_start took 0.123823 s. Min/Max cell volume: 3.381193687454311301e-08 / 5.437474463805225255. Min volume cell: 9900 Min/Max cell volume: 3.381193687454311301e-08 / 5.437474463805225255. Min volume cell: 9900 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 2 ... ####Fixing local invalid at first stage... ####Fix complex singular edges non ff ... ########Fix invalid nodes on boundary... ########Fix invalid singular vertices on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained zero sectors1... ########Push sgv to interior... ####Fixed! Min/Max cell volume: 3.381193687454311301e-08 / 5.437474463805225255. Min volume cell: 9900 Min/Max cell volume: 1.055448294919715645e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 885 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 31.80776407772186) using linear solver Umfpack iter: 0, feasible, f(x) = 8.8828466266610455, t = 0.216 (tmax=1) _clamped_, res_primal = 0, res_dual = 19.567251373732333, regularization = 0, eps = [Newton decrement] = 5.0292939008934923, KKT residual^2 = 1.3262492460125306e-28 iter: 1, feasible, f(x) = 8.6607376550971118, t = 0.077759999999999996 (tmax=1) _clamped_, res_primal = 0, res_dual = 16.63537334832472, regularization = 0, eps = [Newton decrement] = 2.9727217061665048, KKT residual^2 = 1.0695659620014741e-28 iter: 2, feasible, f(x) = 8.4837605557197264, t = 0.077759999999999996 (tmax=1) _clamped_, res_primal = 0, res_dual = 14.103741811415473, regularization = 0.001, eps = [Newton decrement] = 2.3697873943232373, KKT residual^2 = 7.1046573768948053e-29 iter: 3, feasible, f(x) = 8.1209554621412607, t = 0.216 (tmax=1) _clamped_, res_primal = 0, res_dual = 13.366688813265037, regularization = 0.01, eps = [Newton decrement] = 1.8931823650081436, KKT residual^2 = 4.5914543956879511e-29 iter: 4, feasible, f(x) = 7.6385864713659917, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 2.7066164894678142, regularization = 0.01, eps = [Newton decrement] = 1.1388243598444536, KKT residual^2 = 4.8572701028596462e-29 iter: 5, feasible, f(x) = 7.5394464279533455, t = 1 (tmax=1), res_primal = 0, res_dual = 0.20219952044720124, regularization = 0.01, eps = [Newton decrement] = 0.1932963469987885, KKT residual^2 = 6.9841346567252078e-30 iter: 6, feasible, f(x) = 7.5386866808078459, t = 1 (tmax=1), res_primal = 0, res_dual = 0.028583109744760797, regularization = 0.0050000000000000001, eps = [Newton decrement] = 0.0012051428125736203, KKT residual^2 = 9.5814158369998645e-32 iter: 7, feasible, f(x) = 7.5385760717193486, t = 1 (tmax=1), res_primal = 0, res_dual = 0.0019935422140524238, regularization = 0.0025000000000000001, eps = [Newton decrement] = 0.00017636741202886597, KKT residual^2 = 4.4234392513862474e-33 iter: 8, feasible, f(x) = 7.5385631827543254, t = 1 (tmax=1), res_primal = 0, res_dual = 2.5606831709883576e-05, regularization = 0.00125, eps = [Newton decrement] = 2.1517869367680388e-05, KKT residual^2 = 3.7913271179120915e-34 iter: 9, feasible, f(x) = 7.5385622649113397, t = 1 (tmax=1), res_primal = 0, res_dual = 1.0577229359094868e-07, regularization = 0, eps = [Newton decrement] = 1.4205529272215822e-06, KKT residual^2 = 4.2402861135134898e-35 iter: 10, feasible, f(x) = 7.5385621637582672, t = 1 (tmax=1), res_primal = 0, res_dual = 2.4234905097647514e-08, regularization = 0, eps = [Newton decrement] = 1.4685335444160675e-07, KKT residual^2 = 6.1335809601982904e-36 ######## NP-Timings ######## total time : 0.07489s total time NP : 0.05746s (76.72310 %) eval_f time : 0.00462s ( #evals: 39 -> avg 0.00012s ) eval_grad time: 0.00222s ( #evals: 12 -> avg 0.00018s, factor: 1.56096) eval_hess time: 0.05062s ( #evals: 11 -> avg 0.00460s, factor: 38.86718) solve_infeasible_start took 0.074967999999999965 s. Min/Max cell volume: 1.18407083106755425e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 1.18407083106755425e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 3 ... ####Fixing local invalid at first stage... ####Fix complex singular edges non ff ... ########Fix invalid nodes on boundary... ########Fix invalid singular vertices on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained zero sectors1... ########Push sgv to interior... ####Fixed! Min/Max cell volume: 1.18407083106755425e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 1.18407083106755425e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 882 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 3.9513578706425059) using linear solver Umfpack iter: 0, feasible, f(x) = 7.2380529447809465, t = 0.12959999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 2.9857699490723566, regularization = 0, eps = [Newton decrement] = 1.319891536448748, KKT residual^2 = 1.0047474216219067e-28 iter: 1, feasible, f(x) = 7.1792180864353412, t = 0.077759999999999996 (tmax=1) _clamped_, res_primal = 0, res_dual = 2.504710657249841, regularization = 0, eps = [Newton decrement] = 0.79209350543269663, KKT residual^2 = 1.2482204651685862e-28 iter: 2, feasible, f(x) = 7.0146582792174739, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 1.406897975241991, regularization = 0.001, eps = [Newton decrement] = 0.56196429053554797, KKT residual^2 = 1.2496549508607911e-28 iter: 3, feasible, f(x) = 6.9638701166401438, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 0.6263158049695372, regularization = 0.001, eps = [Newton decrement] = 0.17543300316405491, KKT residual^2 = 1.7915890831258733e-29 iter: 4, feasible, f(x) = 6.9339256858679166, t = 1 (tmax=1), res_primal = 0, res_dual = 0.013968820109830835, regularization = 0.001, eps = [Newton decrement] = 0.059739195693253345, KKT residual^2 = 2.0084168828520665e-30 iter: 5, feasible, f(x) = 6.9336885327838749, t = 1 (tmax=1), res_primal = 0, res_dual = 0.00034143911864056717, regularization = 0, eps = [Newton decrement] = 0.00038647180626268741, KKT residual^2 = 5.2642854592919711e-33 iter: 6, feasible, f(x) = 6.9336547499676398, t = 1 (tmax=1), res_primal = 0, res_dual = 5.6368770541105092e-06, regularization = 0, eps = [Newton decrement] = 4.833674112340875e-05, KKT residual^2 = 3.9065158995976154e-34 iter: 7, feasible, f(x) = 6.9336449662495951, t = 1 (tmax=1), res_primal = 0, res_dual = 2.4839923391487383e-06, regularization = 0, eps = [Newton decrement] = 1.2020024123965863e-05, KKT residual^2 = 7.9395132233519308e-35 iter: 8, feasible, f(x) = 6.933640896121557, t = 1 (tmax=1), res_primal = 0, res_dual = 1.3724457165099204e-06, regularization = 0, eps = [Newton decrement] = 4.9147875721711254e-06, KKT residual^2 = 3.1244407562664633e-35 iter: 9, feasible, f(x) = 6.9336390965221355, t = 1 (tmax=1), res_primal = 0, res_dual = 7.9222392638671108e-07, regularization = 0, eps = [Newton decrement] = 2.1493966979874108e-06, KKT residual^2 = 1.6713726456419864e-35 iter: 10, feasible, f(x) = 6.9336382543350288, t = 1 (tmax=1), res_primal = 0, res_dual = 4.7514615181087637e-07, regularization = 0, eps = [Newton decrement] = 9.9348114093950976e-07, KKT residual^2 = 4.6573036785093421e-36 ######## NP-Timings ######## total time : 0.07579s total time NP : 0.05684s (74.99967 %) eval_f time : 0.00419s ( #evals: 35 -> avg 0.00012s ) eval_grad time: 0.00235s ( #evals: 12 -> avg 0.00020s, factor: 1.63258) eval_hess time: 0.05030s ( #evals: 11 -> avg 0.00457s, factor: 38.16968) solve_infeasible_start took 0.075915999999999997 s. Min/Max cell volume: 1.503801764738420569e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 1.503801764738420569e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 4 ... ####Fixing local invalid at first stage... ####Fix complex singular edges non ff ... ########Fix interior(non ffv) invalid nodes... ########Fix invalid nodes on boundary... ########Fix invalid singular vertices on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained zero sectors1... ########Push sgv to interior... ########Remove zipper nodes... ####Fixed! Min/Max cell volume: 1.503801764738420569e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 1.503801764738420569e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 2.7003649895279525) using linear solver Umfpack iter: 0, feasible, f(x) = 6.6427650394196345, t = 0.35999999999999999 (tmax=1) _clamped_, res_primal = 0, res_dual = 1.1448206824524445, regularization = 0, eps = [Newton decrement] = 0.99641419297349143, KKT residual^2 = 6.4389901277368123e-29 iter: 1, feasible, f(x) = 6.4994379321955433, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 0.24992956089678164, regularization = 0, eps = [Newton decrement] = 0.34182014642978542, KKT residual^2 = 2.078802120481318e-29 iter: 2, feasible, f(x) = 6.4734640707663607, t = 1 (tmax=1), res_primal = 0, res_dual = 0.0055122533451863595, regularization = 0, eps = [Newton decrement] = 0.052467685369099279, KKT residual^2 = 1.4521273785816117e-30 iter: 3, feasible, f(x) = 6.473182029729875, t = 1 (tmax=1), res_primal = 0, res_dual = 7.6937417207653637e-05, regularization = 0, eps = [Newton decrement] = 0.00041920747172074569, KKT residual^2 = 1.1442361848423794e-32 iter: 4, feasible, f(x) = 6.4731035803513954, t = 1 (tmax=1), res_primal = 0, res_dual = 2.9075621600819959e-05, regularization = 0, eps = [Newton decrement] = 9.5063097566392934e-05, KKT residual^2 = 1.1342375421730527e-33 iter: 5, feasible, f(x) = 6.4730648391693499, t = 1 (tmax=1), res_primal = 0, res_dual = 1.5866906802659119e-05, regularization = 0, eps = [Newton decrement] = 4.4625869165316502e-05, KKT residual^2 = 3.9507267582435133e-34 iter: 6, feasible, f(x) = 6.4730438124930245, t = 1 (tmax=1), res_primal = 0, res_dual = 8.6738193045120598e-06, regularization = 0, eps = [Newton decrement] = 2.4106599423229964e-05, KKT residual^2 = 1.4024997729933641e-34 iter: 7, feasible, f(x) = 6.4730321801362107, t = 1 (tmax=1), res_primal = 0, res_dual = 4.811495285751293e-06, regularization = 0, eps = [Newton decrement] = 1.3305713403320002e-05, KKT residual^2 = 1.0561608122986904e-34 iter: 8, feasible, f(x) = 6.4730256750176407, t = 1 (tmax=1), res_primal = 0, res_dual = 2.6950964108979182e-06, regularization = 0, eps = [Newton decrement] = 7.4301504506151628e-06, KKT residual^2 = 8.8235136573493014e-35 iter: 9, feasible, f(x) = 6.4730220110833425, t = 1 (tmax=1), res_primal = 0, res_dual = 1.51972435198276e-06, regularization = 0, eps = [Newton decrement] = 4.1807697879447514e-06, KKT residual^2 = 1.7054852085735545e-35 iter: 10, feasible, f(x) = 6.4730199370621699, t = 1 (tmax=1), res_primal = 0, res_dual = 8.6098378682369544e-07, regularization = 0, eps = [Newton decrement] = 2.3648921458115234e-06, KKT residual^2 = 2.100064681391079e-35 iter: 11, feasible, f(x) = 6.4730187588098671, t = 1 (tmax=1), res_primal = 0, res_dual = 4.8942922118680532e-07, regularization = 0, eps = [Newton decrement] = 1.3427973390423583e-06, KKT residual^2 = 2.6595043424070057e-35 iter: 12, feasible, f(x) = 6.4730180876919521, t = 1 (tmax=1), res_primal = 0, res_dual = 2.7890166381862408e-07, regularization = 0, eps = [Newton decrement] = 7.6454806847957166e-07, KKT residual^2 = 8.2968104526180967e-36 ######## NP-Timings ######## total time : 0.08689s total time NP : 0.06648s (76.51547 %) eval_f time : 0.00357s ( #evals: 29 -> avg 0.00012s ) eval_grad time: 0.00276s ( #evals: 14 -> avg 0.00020s, factor: 1.60543) eval_hess time: 0.06015s ( #evals: 13 -> avg 0.00463s, factor: 37.64087) solve_infeasible_start took 0.086970000000000006 s. Min/Max cell volume: 3.074335782788228125e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 3.074335782788228125e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 5 ... ####Fixing local invalid at first stage... ####Fix complex singular edges non ff ... ########Fix interior(non ffv) invalid nodes... ########Fix invalid nodes on boundary... ########Fix invalid singular vertices on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained zero sectors1... ########Push sgv to interior... ########Remove zipper nodes... ####Fixed! Min/Max cell volume: 3.074335782788228125e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 3.074335782788228125e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.42485131598593612) using linear solver Umfpack iter: 0, feasible, f(x) = 6.3649550405545119, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 0.084338772314796223, regularization = 0, eps = [Newton decrement] = 0.15390401626680791, KKT residual^2 = 5.7605175171669239e-29 iter: 1, feasible, f(x) = 6.3563760266281566, t = 1 (tmax=1), res_primal = 0, res_dual = 0.00096663262219281142, regularization = 0, eps = [Newton decrement] = 0.017188018979217092, KKT residual^2 = 1.9592497753325477e-30 iter: 2, feasible, f(x) = 6.356197110807285, t = 1 (tmax=1), res_primal = 0, res_dual = 5.9495334258799478e-05, regularization = 0, eps = [Newton decrement] = 0.00026736216308656286, KKT residual^2 = 1.3664569299420318e-32 iter: 3, feasible, f(x) = 6.3561512975515901, t = 1 (tmax=1), res_primal = 0, res_dual = 7.8073582528264439e-06, regularization = 0, eps = [Newton decrement] = 5.819468338117222e-05, KKT residual^2 = 9.1814226419183685e-34 iter: 4, feasible, f(x) = 6.3561335816988365, t = 1 (tmax=1), res_primal = 0, res_dual = 3.0585297988385913e-06, regularization = 0, eps = [Newton decrement] = 2.1692257928651458e-05, KKT residual^2 = 1.2772325019795422e-34 iter: 5, feasible, f(x) = 6.3561263521848055, t = 1 (tmax=1), res_primal = 0, res_dual = 1.2634201074791865e-06, regularization = 0, eps = [Newton decrement] = 8.8235661318855862e-06, KKT residual^2 = 8.7485899963966129e-35 iter: 6, feasible, f(x) = 6.3561233893897793, t = 1 (tmax=1), res_primal = 0, res_dual = 5.1898547973222841e-07, regularization = 0, eps = [Newton decrement] = 3.6149134608210155e-06, KKT residual^2 = 3.7400057329993566e-35 iter: 7, feasible, f(x) = 6.3561221765986557, t = 1 (tmax=1), res_primal = 0, res_dual = 2.1240332040917586e-07, regularization = 0, eps = [Newton decrement] = 1.4800726237271125e-06, KKT residual^2 = 4.1861968166842422e-36 iter: 8, feasible, f(x) = 6.3561216812392249, t = 1 (tmax=1), res_primal = 0, res_dual = 8.6698937951097573e-08, regularization = 0, eps = [Newton decrement] = 6.04699543336639e-07, KKT residual^2 = 5.8380375435951376e-36 ######## NP-Timings ######## total time : 0.06366s total time NP : 0.04784s (75.15277 %) eval_f time : 0.00233s ( #evals: 19 -> avg 0.00012s ) eval_grad time: 0.00194s ( #evals: 10 -> avg 0.00019s, factor: 1.58361) eval_hess time: 0.04357s ( #evals: 9 -> avg 0.00484s, factor: 39.47506) solve_infeasible_start took 0.063733999999999999 s. Min/Max cell volume: 3.603216251124136501e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 3.603216251124136501e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 6 ... ####Fixing local invalid at first stage... ####Fix complex singular edges non ff ... ########Fix interior(non ffv) invalid nodes... ########Fix invalid nodes on boundary... ########Fix invalid singular vertices on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained zero sectors1... ########Push sgv to interior... ########Remove zipper nodes... ####Fixed! Min/Max cell volume: 3.603216251124136501e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 3.603216251124136501e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.01171225816934356) using linear solver Umfpack iter: 0, feasible, f(x) = 6.3024029153658097, t = 1 (tmax=1), res_primal = 0, res_dual = 0.00013169170694426419, regularization = 0, eps = [Newton decrement] = 0.028757330449117918, KKT residual^2 = 7.8766204008772025e-30 iter: 1, feasible, f(x) = 6.3023247854926607, t = 1 (tmax=1), res_primal = 0, res_dual = 5.3652349411726773e-06, regularization = 0, eps = [Newton decrement] = 0.00012852901547359859, KKT residual^2 = 9.6288934477732446e-33 iter: 2, feasible, f(x) = 6.3023186134209608, t = 1 (tmax=1), res_primal = 0, res_dual = 6.6617963661508134e-07, regularization = 0, eps = [Newton decrement] = 9.2923511384094783e-06, KKT residual^2 = 1.8205209645729424e-34 iter: 3, feasible, f(x) = 6.3023179201430661, t = 1 (tmax=1), res_primal = 0, res_dual = 7.9777821386802241e-08, regularization = 0, eps = [Newton decrement] = 1.0384582281606355e-06, KKT residual^2 = 1.6297755596914338e-35 iter: 4, feasible, f(x) = 6.3023178411303107, t = 1 (tmax=1), res_primal = 0, res_dual = 9.3934357776981917e-09, regularization = 0, eps = [Newton decrement] = 1.1811533418858517e-07, KKT residual^2 = 2.3725757539519063e-36 ######## NP-Timings ######## total time : 0.03850s total time NP : 0.02898s (75.27597 %) eval_f time : 0.00146s ( #evals: 10 -> avg 0.00015s ) eval_grad time: 0.00131s ( #evals: 6 -> avg 0.00022s, factor: 1.49943) eval_hess time: 0.02622s ( #evals: 5 -> avg 0.00524s, factor: 36.03849) solve_infeasible_start took 0.038600000000000002 s. Min/Max cell volume: 4.503020844782233798e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 4.503020844782233798e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 7 ... ####Fixing local invalid at first stage... ####Fix complex singular edges non ff ... ########Fix interior(non ffv) invalid nodes... ########Fix invalid nodes on boundary... ########Fix invalid singular vertices on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained zero sectors1... ########Push sgv to interior... ########Remove zipper nodes... ####Fixed! Min/Max cell volume: 4.503020844782233798e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 4.503020844782233798e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.054588617382426728) using linear solver Umfpack iter: 0, feasible, f(x) = 6.248792783003779, t = 0.59999999999999998 (tmax=1) _clamped_, res_primal = 0, res_dual = 0.0097349114715080363, regularization = 0, eps = [Newton decrement] = 0.067048972778764565, KKT residual^2 = 9.8187564533763393e-30 iter: 1, feasible, f(x) = 6.2450243102539131, t = 1 (tmax=1), res_primal = 0, res_dual = 0.010226552396407386, regularization = 0, eps = [Newton decrement] = 0.0085997069281332234, KKT residual^2 = 1.7971730683363248e-30 iter: 2, feasible, f(x) = 6.244692510271352, t = 1 (tmax=1), res_primal = 0, res_dual = 0.0011389378691721928, regularization = 0, eps = [Newton decrement] = 0.0005238041302722781, KKT residual^2 = 1.0634117135547203e-32 iter: 3, feasible, f(x) = 6.2446079666960372, t = 1 (tmax=1), res_primal = 0, res_dual = 4.5458412840144385e-05, regularization = 0, eps = [Newton decrement] = 0.00014555531564232961, KKT residual^2 = 5.6777594186025916e-33 iter: 4, feasible, f(x) = 6.2446021344850031, t = 1 (tmax=1), res_primal = 0, res_dual = 1.5969686409299732e-07, regularization = 0, eps = [Newton decrement] = 1.0572382115209445e-05, KKT residual^2 = 5.9418599667481522e-34 iter: 5, feasible, f(x) = 6.2446018688325449, t = 1 (tmax=1), res_primal = 0, res_dual = 1.1099488687008087e-08, regularization = 0, eps = [Newton decrement] = 3.6781091547492369e-07, KKT residual^2 = 1.0197794769091309e-35 ######## NP-Timings ######## total time : 0.04690s total time NP : 0.03550s (75.69567 %) eval_f time : 0.00179s ( #evals: 13 -> avg 0.00014s ) eval_grad time: 0.00150s ( #evals: 7 -> avg 0.00021s, factor: 1.54676) eval_hess time: 0.03221s ( #evals: 6 -> avg 0.00537s, factor: 38.87809) solve_infeasible_start took 0.046987000000000001 s. Min/Max cell volume: 5.064829046032238644e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 5.064829046032238644e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 8 ... ####Fixing local invalid at first stage... ####Fix complex singular edges non ff ... ########Fix interior(non ffv) invalid nodes... ########Fix invalid nodes on boundary... ########Fix invalid singular vertices on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained zero sectors1... ########Push sgv to interior... ########Remove zipper nodes... ####Fixed! Min/Max cell volume: 5.064829046032238644e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 5.064829046032238644e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.0079277324055166097) using linear solver Umfpack iter: 0, feasible, f(x) = 6.2111974335001934, t = 1 (tmax=1), res_primal = 0, res_dual = 4.3673971799737978e-05, regularization = 0, eps = [Newton decrement] = 0.012042590345609287, KKT residual^2 = 6.2533927663222289e-30 iter: 1, feasible, f(x) = 6.2111609391091944, t = 1 (tmax=1), res_primal = 0, res_dual = 4.9627309785822745e-06, regularization = 0, eps = [Newton decrement] = 5.6138447554825174e-05, KKT residual^2 = 3.5016460272019053e-33 iter: 2, feasible, f(x) = 6.2111559391102062, t = 1 (tmax=1), res_primal = 0, res_dual = 1.3363906343518801e-06, regularization = 0, eps = [Newton decrement] = 6.9848496210778736e-06, KKT residual^2 = 1.571403131568695e-34 iter: 3, feasible, f(x) = 6.2111548978370248, t = 1 (tmax=1), res_primal = 0, res_dual = 3.7347019616998468e-07, regularization = 0, eps = [Newton decrement] = 1.410728554674574e-06, KKT residual^2 = 1.2911637724164447e-35 iter: 4, feasible, f(x) = 6.21115464571412, t = 1 (tmax=1), res_primal = 0, res_dual = 1.0621375271570952e-07, regularization = 0, eps = [Newton decrement] = 3.3523965858557887e-07, KKT residual^2 = 3.1923979463810441e-36 ######## NP-Timings ######## total time : 0.03746s total time NP : 0.02826s (75.43785 %) eval_f time : 0.00125s ( #evals: 10 -> avg 0.00012s ) eval_grad time: 0.00123s ( #evals: 6 -> avg 0.00021s, factor: 1.64662) eval_hess time: 0.02578s ( #evals: 5 -> avg 0.00516s, factor: 41.34242) solve_infeasible_start took 0.037539000000000003 s. Min/Max cell volume: 5.608666581618590175e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 5.608666581618590175e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 9 ... ####Fixing local invalid at first stage... ####Fix complex singular edges non ff ... ########Fix interior(non ffv) invalid nodes... ########Fix invalid nodes on boundary... ########Fix invalid singular vertices on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained zero sectors1... ########Push sgv to interior... ########Remove zipper nodes... ####Fixed! Min/Max cell volume: 5.608666581618590175e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 5.608666581618590175e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.002129483307846328) using linear solver Umfpack iter: 0, feasible, f(x) = 6.2084738226162095, t = 1 (tmax=1), res_primal = 0, res_dual = 2.1895810687891247e-05, regularization = 0, eps = [Newton decrement] = 0.004866700613240905, KKT residual^2 = 1.670949628190041e-30 iter: 1, feasible, f(x) = 6.2084479527915644, t = 1 (tmax=1), res_primal = 0, res_dual = 2.2600698113714041e-06, regularization = 0, eps = [Newton decrement] = 3.8975769692325031e-05, KKT residual^2 = 2.3980609758716374e-33 iter: 2, feasible, f(x) = 6.208444290411526, t = 1 (tmax=1), res_primal = 0, res_dual = 6.8108318448610365e-07, regularization = 0, eps = [Newton decrement] = 5.1365932451464224e-06, KKT residual^2 = 1.7748318824788185e-34 iter: 3, feasible, f(x) = 6.2084435448208302, t = 1 (tmax=1), res_primal = 0, res_dual = 2.2738608602996299e-07, regularization = 0, eps = [Newton decrement] = 1.0035785349491221e-06, KKT residual^2 = 8.037701735999689e-36 iter: 4, feasible, f(x) = 6.2084433509059949, t = 1 (tmax=1), res_primal = 0, res_dual = 7.9090767418043627e-08, regularization = 0, eps = [Newton decrement] = 2.5204712741003869e-07, KKT residual^2 = 2.4550775019471538e-36 ######## NP-Timings ######## total time : 0.03586s total time NP : 0.02705s (75.42040 %) eval_f time : 0.00126s ( #evals: 10 -> avg 0.00013s ) eval_grad time: 0.00119s ( #evals: 6 -> avg 0.00020s, factor: 1.57937) eval_hess time: 0.02459s ( #evals: 5 -> avg 0.00492s, factor: 39.03333) solve_infeasible_start took 0.035950000000000003 s. Min/Max cell volume: 5.819379465864786837e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 5.819379465864786837e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 10 ... ####Fixing local invalid at first stage... ####Fix complex singular edges non ff ... ########Fix interior(non ffv) invalid nodes... ########Fix invalid nodes on boundary... ########Fix invalid singular vertices on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained zero sectors1... ########Push sgv to interior... ########Remove zipper nodes... ####Fixed! Min/Max cell volume: 5.819379465864786837e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 5.819379465864786837e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.0020568174973936764) using linear solver Umfpack iter: 0, feasible, f(x) = 6.2011065885720704, t = 1 (tmax=1), res_primal = 0, res_dual = 6.5926001114392723e-05, regularization = 0, eps = [Newton decrement] = 0.0039536686814971335, KKT residual^2 = 1.3380129818997047e-30 iter: 1, feasible, f(x) = 6.2010273687700028, t = 1 (tmax=1), res_primal = 0, res_dual = 1.4070655442573462e-05, regularization = 0, eps = [Newton decrement] = 0.00011564420216848708, KKT residual^2 = 2.7814683294446416e-33 iter: 2, feasible, f(x) = 6.2010121830822182, t = 1 (tmax=1), res_primal = 0, res_dual = 5.7886525473864021e-06, regularization = 0, eps = [Newton decrement] = 1.9783615910128773e-05, KKT residual^2 = 3.7223749301512467e-34 iter: 3, feasible, f(x) = 6.2010069205213743, t = 1 (tmax=1), res_primal = 0, res_dual = 2.608527857782067e-06, regularization = 0, eps = [Newton decrement] = 6.411935347779161e-06, KKT residual^2 = 1.2417630402395282e-34 iter: 4, feasible, f(x) = 6.2010046116259616, t = 1 (tmax=1), res_primal = 0, res_dual = 1.2216179733578413e-06, regularization = 0, eps = [Newton decrement] = 2.7505205307614059e-06, KKT residual^2 = 2.0788750502906435e-35 iter: 5, feasible, f(x) = 6.2010035253942561, t = 1 (tmax=1), res_primal = 0, res_dual = 5.8393610127869503e-07, regularization = 0, eps = [Newton decrement] = 1.2847663258291892e-06, KKT residual^2 = 8.3882769530109321e-36 iter: 6, feasible, f(x) = 6.201003002456428, t = 1 (tmax=1), res_primal = 0, res_dual = 2.824796194335461e-07, regularization = 0, eps = [Newton decrement] = 6.1671539089898835e-07, KKT residual^2 = 4.6765876485902796e-36 ######## NP-Timings ######## total time : 0.04712s total time NP : 0.03562s (75.60003 %) eval_f time : 0.00164s ( #evals: 14 -> avg 0.00012s ) eval_grad time: 0.00154s ( #evals: 8 -> avg 0.00019s, factor: 1.64355) eval_hess time: 0.03244s ( #evals: 7 -> avg 0.00463s, factor: 39.46107) solve_infeasible_start took 0.047208 s. Min/Max cell volume: 6.164949175748457859e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 6.164949175748457859e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 11 ... ####Fixing local invalid at first stage... ####Fix complex singular edges non ff ... ########Fix interior(non ffv) invalid nodes... ########Fix invalid nodes on boundary... ########Fix invalid singular vertices on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained zero sectors1... ########Push sgv to interior... ########Remove zipper nodes... ####Fixed! Min/Max cell volume: 6.164949175748457859e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 6.164949175748457859e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.0026012476896251219) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1916290757681791, t = 1 (tmax=1), res_primal = 0, res_dual = 1.2981651710096067e-05, regularization = 0, eps = [Newton decrement] = 0.0054524409699081957, KKT residual^2 = 1.5994306311381323e-30 iter: 1, feasible, f(x) = 6.1916013487527648, t = 1 (tmax=1), res_primal = 0, res_dual = 2.9663452163044164e-06, regularization = 0, eps = [Newton decrement] = 4.2401537533225616e-05, KKT residual^2 = 1.9863795160472182e-33 iter: 2, feasible, f(x) = 6.1915972877012182, t = 1 (tmax=1), res_primal = 0, res_dual = 1.3008060477870127e-06, regularization = 0, eps = [Newton decrement] = 5.3529705134117727e-06, KKT residual^2 = 9.8117168767412634e-35 iter: 3, feasible, f(x) = 6.1915959047617175, t = 1 (tmax=1), res_primal = 0, res_dual = 6.1123089775087313e-07, regularization = 0, eps = [Newton decrement] = 1.6724933288648393e-06, KKT residual^2 = 1.7704114621161167e-35 iter: 4, feasible, f(x) = 6.1915952784454911, t = 1 (tmax=1), res_primal = 0, res_dual = 2.9447612306361423e-07, regularization = 0, eps = [Newton decrement] = 7.4146178284792644e-07, KKT residual^2 = 8.4545770499713615e-36 ######## NP-Timings ######## total time : 0.03413s total time NP : 0.02541s (74.45275 %) eval_f time : 0.00131s ( #evals: 10 -> avg 0.00013s ) eval_grad time: 0.00126s ( #evals: 6 -> avg 0.00021s, factor: 1.60168) eval_hess time: 0.02284s ( #evals: 5 -> avg 0.00457s, factor: 34.92661) solve_infeasible_start took 0.034201000000000002 s. Min/Max cell volume: 6.967894929992037565e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 6.967894929992037565e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 12 ... ####Fixing local invalid at first stage... ####Fix complex singular edges non ff ... ########Fix interior(non ffv) invalid nodes... ########Fix invalid nodes on boundary... ########Fix invalid singular vertices on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained zero sectors1... ########Push sgv to interior... ########Remove zipper nodes... ####Fixed! Min/Max cell volume: 6.967894929992037565e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 6.967894929992037565e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.0012725647958714231) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1951546650187028, t = 1 (tmax=1), res_primal = 0, res_dual = 2.092263359030954e-06, regularization = 0, eps = [Newton decrement] = 0.00094494190757214724, KKT residual^2 = 2.6710161227659134e-31 iter: 1, feasible, f(x) = 6.1951371030624989, t = 1 (tmax=1), res_primal = 0, res_dual = 4.8012671301450977e-07, regularization = 0, eps = [Newton decrement] = 2.7169398774873982e-05, KKT residual^2 = 1.2150001377656445e-33 iter: 2, feasible, f(x) = 6.1951353137572971, t = 1 (tmax=1), res_primal = 0, res_dual = 2.1681729000631412e-07, regularization = 0, eps = [Newton decrement] = 2.5965406363491674e-06, KKT residual^2 = 4.2734408146382817e-35 iter: 3, feasible, f(x) = 6.195134967507566, t = 1 (tmax=1), res_primal = 0, res_dual = 1.0542030342705296e-07, regularization = 0, eps = [Newton decrement] = 4.4832219453189127e-07, KKT residual^2 = 6.2541071655058249e-36 ######## NP-Timings ######## total time : 0.02766s total time NP : 0.02077s (75.09491 %) eval_f time : 0.00094s ( #evals: 8 -> avg 0.00012s ) eval_grad time: 0.00099s ( #evals: 5 -> avg 0.00020s, factor: 1.67126) eval_hess time: 0.01884s ( #evals: 4 -> avg 0.00471s, factor: 39.95970) solve_infeasible_start took 0.027737000000000001 s. Min/Max cell volume: 7.344695264694676214e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.344695264694676214e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 13 ... ####Fixing local invalid singular nodes at second stage... ########Remove zipper nodes... ####Fix complex singular edges ... ########Fix interior(non ffv) invalid nodes... ########Fix invalid nodes on boundary... ########Fix invalid nodes on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained tps... ########Fix zipper nodes... ####Fixed! Min/Max cell volume: 7.344695264694676214e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.344695264694676214e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.0017000442937978285) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1645671650449483, t = 1 (tmax=1), res_primal = 0, res_dual = 3.6809752859925659e-06, regularization = 0, eps = [Newton decrement] = 0.0014378145303972252, KKT residual^2 = 2.7964064381216288e-31 iter: 1, feasible, f(x) = 6.1645456550964877, t = 1 (tmax=1), res_primal = 0, res_dual = 1.2713691908655608e-06, regularization = 0, eps = [Newton decrement] = 3.2637844359075835e-05, KKT residual^2 = 9.8852427510204317e-34 iter: 2, feasible, f(x) = 6.1645427483255384, t = 1 (tmax=1), res_primal = 0, res_dual = 6.2051979581350775e-07, regularization = 0, eps = [Newton decrement] = 3.9644909554473802e-06, KKT residual^2 = 1.3857765497262049e-34 iter: 3, feasible, f(x) = 6.1645419133779011, t = 1 (tmax=1), res_primal = 0, res_dual = 3.0461741583405638e-07, regularization = 0, eps = [Newton decrement] = 1.0280951724224732e-06, KKT residual^2 = 1.8193978427884709e-35 iter: 4, feasible, f(x) = 6.1645415554782979, t = 1 (tmax=1), res_primal = 0, res_dual = 1.4881042675229451e-07, regularization = 0, eps = [Newton decrement] = 4.254251049305803e-07, KKT residual^2 = 6.8368358094719478e-36 ######## NP-Timings ######## total time : 0.03320s total time NP : 0.02494s (75.12574 %) eval_f time : 0.00119s ( #evals: 10 -> avg 0.00012s ) eval_grad time: 0.00113s ( #evals: 6 -> avg 0.00019s, factor: 1.58690) eval_hess time: 0.02262s ( #evals: 5 -> avg 0.00452s, factor: 37.98321) solve_infeasible_start took 0.033276 s. Min/Max cell volume: 7.689675349921815627e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.689675349921815627e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 14 ... ####Fixed! Min/Max cell volume: 7.689675349921815627e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.689675349921815627e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.00074218238840598704) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1696159382820248, t = 1 (tmax=1), res_primal = 0, res_dual = 6.2351796766080534e-07, regularization = 0, eps = [Newton decrement] = 0.00013730469283343311, KKT residual^2 = 3.3119528629811134e-32 iter: 1, feasible, f(x) = 6.1696141064321939, t = 1 (tmax=1), res_primal = 0, res_dual = 2.0676652327194425e-07, regularization = 0, eps = [Newton decrement] = 2.7567873420435985e-06, KKT residual^2 = 6.2987721364508377e-35 iter: 2, feasible, f(x) = 6.169613811811101, t = 1 (tmax=1), res_primal = 0, res_dual = 8.9707432830878695e-08, regularization = 0, eps = [Newton decrement] = 3.8511979014654181e-07, KKT residual^2 = 5.402390028844424e-36 ######## NP-Timings ######## total time : 0.02172s total time NP : 0.01624s (74.77436 %) eval_f time : 0.00074s ( #evals: 6 -> avg 0.00012s ) eval_grad time: 0.00075s ( #evals: 4 -> avg 0.00019s, factor: 1.51815) eval_hess time: 0.01474s ( #evals: 3 -> avg 0.00491s, factor: 39.62634) solve_infeasible_start took 0.021804999999999998 s. Min/Max cell volume: 7.774221429732138596e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.774221429732138596e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 15 ... ####Fixed! Min/Max cell volume: 7.774221429732138596e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.774221429732138596e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.00085011793995043222) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1553931960055026, t = 1 (tmax=1), res_primal = 0, res_dual = 7.4828639036490195e-06, regularization = 0, eps = [Newton decrement] = 0.00031763857395568785, KKT residual^2 = 1.6703006551179663e-31 iter: 1, feasible, f(x) = 6.1553840119091179, t = 1 (tmax=1), res_primal = 0, res_dual = 3.6081192304869409e-06, regularization = 0, eps = [Newton decrement] = 1.1210276972057708e-05, KKT residual^2 = 3.4737851850457742e-34 iter: 2, feasible, f(x) = 6.1553796902924258, t = 1 (tmax=1), res_primal = 0, res_dual = 1.9423260860562578e-06, regularization = 0, eps = [Newton decrement] = 5.0106255974523685e-06, KKT residual^2 = 6.3170336806215517e-35 iter: 3, feasible, f(x) = 6.1553773911047571, t = 1 (tmax=1), res_primal = 0, res_dual = 1.049520036846315e-06, regularization = 0, eps = [Newton decrement] = 2.6488080697214149e-06, KKT residual^2 = 5.7288669429576697e-35 iter: 4, feasible, f(x) = 6.1553761442178683, t = 1 (tmax=1), res_primal = 0, res_dual = 5.7091002313517433e-07, regularization = 0, eps = [Newton decrement] = 1.4338940107928366e-06, KKT residual^2 = 2.4217618730378232e-35 iter: 5, feasible, f(x) = 6.1553754630878155, t = 1 (tmax=1), res_primal = 0, res_dual = 3.1224815223703357e-07, regularization = 0, eps = [Newton decrement] = 7.8252656067939647e-07, KKT residual^2 = 1.49436960150849e-35 ######## NP-Timings ######## total time : 0.03963s total time NP : 0.03008s (75.91420 %) eval_f time : 0.00140s ( #evals: 12 -> avg 0.00012s ) eval_grad time: 0.00130s ( #evals: 7 -> avg 0.00019s, factor: 1.59157) eval_hess time: 0.02739s ( #evals: 6 -> avg 0.00456s, factor: 39.20830) solve_infeasible_start took 0.039697000000000003 s. Min/Max cell volume: 7.514320000435720096e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.514320000435720096e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 16 ... ####Fixed! Min/Max cell volume: 7.514320000435720096e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.514320000435720096e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.00065313727826954795) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1551925689886353, t = 1 (tmax=1), res_primal = 0, res_dual = 1.8892889711686366e-07, regularization = 0, eps = [Newton decrement] = 1.7593539863054759e-05, KKT residual^2 = 2.9744766851586564e-33 iter: 1, feasible, f(x) = 6.1551922812748998, t = 1 (tmax=1), res_primal = 0, res_dual = 1.0064830736773606e-07, regularization = 0, eps = [Newton decrement] = 3.6319975759985856e-07, KKT residual^2 = 1.2082770413620707e-35 ######## NP-Timings ######## total time : 0.01495s total time NP : 0.01061s (70.97098 %) eval_f time : 0.00048s ( #evals: 4 -> avg 0.00012s ) eval_grad time: 0.00068s ( #evals: 3 -> avg 0.00023s, factor: 1.88727) eval_hess time: 0.00946s ( #evals: 2 -> avg 0.00473s, factor: 39.48225) solve_infeasible_start took 0.015088000000000001 s. Min/Max cell volume: 7.509873323411535642e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.509873323411535642e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 17 ... ####Fixed! Min/Max cell volume: 7.509873323411535642e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.509873323411535642e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.00063989135369794026) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1533545242764642, t = 1 (tmax=1), res_primal = 0, res_dual = 5.7411103741109644e-08, regularization = 0, eps = [Newton decrement] = 1.2581248870055451e-05, KKT residual^2 = 2.8246851944916412e-33 iter: 1, feasible, f(x) = 6.1533544328393246, t = 1 (tmax=1), res_primal = 0, res_dual = 3.0625447086957532e-08, regularization = 0, eps = [Newton decrement] = 1.168456122639324e-07, KKT residual^2 = 3.0051026038121236e-36 ######## NP-Timings ######## total time : 0.01494s total time NP : 0.01074s (71.87688 %) eval_f time : 0.00066s ( #evals: 4 -> avg 0.00017s ) eval_grad time: 0.00057s ( #evals: 3 -> avg 0.00019s, factor: 1.14859) eval_hess time: 0.00951s ( #evals: 2 -> avg 0.00475s, factor: 28.63253) solve_infeasible_start took 0.015018999999999999 s. Min/Max cell volume: 7.510748880770534231e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.510748880770534231e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 18 ... ####Fixed! Min/Max cell volume: 7.510748880770534231e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.510748880770534231e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.00063929230924627579) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1551910553074105, t = 1 (tmax=1), res_primal = 0, res_dual = 1.8924555336395187e-08, regularization = 0, eps = [Newton decrement] = 1.2395471715692058e-05, KKT residual^2 = 2.3805906109310154e-33 iter: 1, feasible, f(x) = 6.1551910099585907, t = 1 (tmax=1), res_primal = 0, res_dual = 9.4119493837846781e-09, regularization = 0, eps = [Newton decrement] = 6.4009641827615667e-08, KKT residual^2 = 2.2382838750319164e-36 ######## NP-Timings ######## total time : 0.01472s total time NP : 0.01077s (73.15582 %) eval_f time : 0.00052s ( #evals: 4 -> avg 0.00013s ) eval_grad time: 0.00059s ( #evals: 3 -> avg 0.00020s, factor: 1.53786) eval_hess time: 0.00966s ( #evals: 2 -> avg 0.00483s, factor: 37.51845) solve_infeasible_start took 0.014805 s. Min/Max cell volume: 7.51121343610569028e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.51121343610569028e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 19 ... ####Fixing local invalid singular nodes at second stage... ########Remove zipper nodes... ####Fix complex singular edges ... ########Fix interior(non ffv) invalid nodes... ########Fix invalid nodes on boundary... ########Fix invalid nodes on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained tps... ########Fix zipper nodes... ####Fixed! Min/Max cell volume: 7.51121343610569028e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.51121343610569028e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.00064638788801005276) using linear solver Umfpack iter: 0, feasible, f(x) = 6.161469552393303, t = 1 (tmax=1), res_primal = 0, res_dual = 1.9996924274296158e-08, regularization = 0, eps = [Newton decrement] = 3.2426817425781025e-05, KKT residual^2 = 6.1073348746041131e-33 iter: 1, feasible, f(x) = 6.1614693171657979, t = 1 (tmax=1), res_primal = 0, res_dual = 3.6334714409934895e-09, regularization = 0, eps = [Newton decrement] = 3.7385650108207781e-07, KKT residual^2 = 1.2119640331578324e-35 ######## NP-Timings ######## total time : 0.01568s total time NP : 0.01143s (72.88611 %) eval_f time : 0.00054s ( #evals: 4 -> avg 0.00014s ) eval_grad time: 0.00063s ( #evals: 3 -> avg 0.00021s, factor: 1.53714) eval_hess time: 0.01026s ( #evals: 2 -> avg 0.00513s, factor: 37.79374) solve_infeasible_start took 0.015755999999999999 s. Min/Max cell volume: 7.511468659357814753e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.511468659357814753e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 20 ... ####Fixed! Min/Max cell volume: 7.511468659357814753e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.511468659357814753e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.00064452053699964309) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1633052887490267, t = 1 (tmax=1), res_primal = 0, res_dual = 3.7158928590083378e-09, regularization = 0, eps = [Newton decrement] = 1.2580831939837016e-05, KKT residual^2 = 2.8677908582934089e-33 iter: 1, feasible, f(x) = 6.1633052603228879, t = 1 (tmax=1), res_primal = 0, res_dual = 9.5671171215257466e-10, regularization = 0, eps = [Newton decrement] = 4.519730856644027e-08, KKT residual^2 = 3.5795955854924672e-36 ######## NP-Timings ######## total time : 0.01486s total time NP : 0.01072s (72.15267 %) eval_f time : 0.00051s ( #evals: 4 -> avg 0.00013s ) eval_grad time: 0.00059s ( #evals: 3 -> avg 0.00020s, factor: 1.54771) eval_hess time: 0.00962s ( #evals: 2 -> avg 0.00481s, factor: 37.71373) solve_infeasible_start took 0.014937000000000001 s. Min/Max cell volume: 7.511621132620554847e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.511621132620554847e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 21 ... ####Fixed! Min/Max cell volume: 7.511621132620554847e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.511621132620554847e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.00071980691128267565) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1538420925308452, t = 1 (tmax=1), res_primal = 0, res_dual = 1.1717815081094231e-07, regularization = 0, eps = [Newton decrement] = 9.5887029902032292e-05, KKT residual^2 = 6.2999645534812174e-33 iter: 1, feasible, f(x) = 6.1538396948371021, t = 1 (tmax=1), res_primal = 0, res_dual = 9.7664793851853708e-09, regularization = 0, eps = [Newton decrement] = 3.7652253347583276e-06, KKT residual^2 = 1.4467996092744289e-34 iter: 2, feasible, f(x) = 6.153839503755882, t = 1 (tmax=1), res_primal = 0, res_dual = 1.812697801948924e-09, regularization = 0, eps = [Newton decrement] = 2.949158623505355e-07, KKT residual^2 = 1.0786387067284105e-35 ######## NP-Timings ######## total time : 0.02093s total time NP : 0.01551s (74.09000 %) eval_f time : 0.00073s ( #evals: 6 -> avg 0.00012s ) eval_grad time: 0.00076s ( #evals: 4 -> avg 0.00019s, factor: 1.57005) eval_hess time: 0.01402s ( #evals: 3 -> avg 0.00467s, factor: 38.51648) solve_infeasible_start took 0.021010000000000001 s. Min/Max cell volume: 7.531643132772601319e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.531643132772601319e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 22 ... ####Fixed! Min/Max cell volume: 7.531643132772601319e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.531643132772601319e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.0006433190811679936) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1556804574914556, t = 1 (tmax=1), res_primal = 0, res_dual = 2.8632357692424441e-09, regularization = 0, eps = [Newton decrement] = 1.2977933774609284e-05, KKT residual^2 = 1.8853254390452498e-33 iter: 1, feasible, f(x) = 6.1556804278957866, t = 1 (tmax=1), res_primal = 0, res_dual = 4.3114751591541628e-10, regularization = 0, eps = [Newton decrement] = 4.7547440108683575e-08, KKT residual^2 = 2.4059006646263777e-36 ######## NP-Timings ######## total time : 0.01434s total time NP : 0.01029s (71.76126 %) eval_f time : 0.00049s ( #evals: 4 -> avg 0.00012s ) eval_grad time: 0.00059s ( #evals: 3 -> avg 0.00020s, factor: 1.59728) eval_hess time: 0.00921s ( #evals: 2 -> avg 0.00461s, factor: 37.61224) solve_infeasible_start took 0.014421000000000002 s. Min/Max cell volume: 7.530905059705218969e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530905059705218969e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 23 ... ####Fixed! Min/Max cell volume: 7.530905059705218969e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530905059705218969e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.00063960594233242521) using linear solver Umfpack iter: 0, feasible, f(x) = 6.153843623459391, t = 1 (tmax=1), res_primal = 0, res_dual = 2.2837680555951602e-09, regularization = 0, eps = [Newton decrement] = 1.2421497670715682e-05, KKT residual^2 = 2.8505051945407554e-33 iter: 1, feasible, f(x) = 6.1538435984106536, t = 1 (tmax=1), res_primal = 0, res_dual = 1.7720634326395436e-10, regularization = 0, eps = [Newton decrement] = 4.0637212191928597e-08, KKT residual^2 = 1.7652729458313778e-36 ######## NP-Timings ######## total time : 0.01432s total time NP : 0.01039s (72.55655 %) eval_f time : 0.00045s ( #evals: 4 -> avg 0.00011s ) eval_grad time: 0.00059s ( #evals: 3 -> avg 0.00020s, factor: 1.73363) eval_hess time: 0.00935s ( #evals: 2 -> avg 0.00468s, factor: 41.28477) solve_infeasible_start took 0.014397 s. Min/Max cell volume: 7.530926491709807164e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530926491709807164e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 24 ... ####Fixed! Min/Max cell volume: 7.530926491709807164e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530926491709807164e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.00063932866222934492) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1556806460015512, t = 1 (tmax=1), res_primal = 0, res_dual = 2.1186104900714724e-09, regularization = 0, eps = [Newton decrement] = 1.2351989966099918e-05, KKT residual^2 = 2.3133911548250165e-33 iter: 1, feasible, f(x) = 6.1556806209091519, t = 1 (tmax=1), res_primal = 0, res_dual = 1.0367685545954717e-10, regularization = 0, eps = [Newton decrement] = 4.0778257530939894e-08, KKT residual^2 = 1.9076066846774454e-36 ######## NP-Timings ######## total time : 0.01402s total time NP : 0.01017s (72.53014 %) eval_f time : 0.00044s ( #evals: 4 -> avg 0.00011s ) eval_grad time: 0.00061s ( #evals: 3 -> avg 0.00020s, factor: 1.85270) eval_hess time: 0.00912s ( #evals: 2 -> avg 0.00456s, factor: 41.54442) solve_infeasible_start took 0.014108000000000001 s. Min/Max cell volume: 7.530944452530790049e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530944452530790049e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 25 ... ####Fixing local invalid singular nodes at second stage... ########Remove zipper nodes... ####Fix complex singular edges ... ########Fix interior(non ffv) invalid nodes... ########Fix invalid nodes on boundary... ########Fix invalid nodes on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained tps... ########Fix zipper nodes... ####Fixed! Min/Max cell volume: 7.530944452530790049e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530944452530790049e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.00063960867847504162) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1538438561107842, t = 1 (tmax=1), res_primal = 0, res_dual = 2.1161972848337603e-09, regularization = 0, eps = [Newton decrement] = 1.24343001115292e-05, KKT residual^2 = 2.5483080714383595e-33 iter: 1, feasible, f(x) = 6.1538438311379933, t = 1 (tmax=1), res_primal = 0, res_dual = 8.1146331903269539e-11, regularization = 0, eps = [Newton decrement] = 4.0608361883322202e-08, KKT residual^2 = 2.2274537992600393e-36 ######## NP-Timings ######## total time : 0.01448s total time NP : 0.01058s (73.04372 %) eval_f time : 0.00046s ( #evals: 4 -> avg 0.00011s ) eval_grad time: 0.00062s ( #evals: 3 -> avg 0.00021s, factor: 1.80683) eval_hess time: 0.00950s ( #evals: 2 -> avg 0.00475s, factor: 41.37255) solve_infeasible_start took 0.014551999999999999 s. Min/Max cell volume: 7.530963468687512522e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530963468687512522e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 26 ... ####Fixed! Min/Max cell volume: 7.530963468687512522e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530963468687512522e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.00063932816137634804) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1556806118050194, t = 1 (tmax=1), res_primal = 0, res_dual = 2.0648183124364609e-09, regularization = 0, eps = [Newton decrement] = 1.235088236828118e-05, KKT residual^2 = 4.3081295011134848e-33 iter: 1, feasible, f(x) = 6.1556805867878168, t = 1 (tmax=1), res_primal = 0, res_dual = 7.4022417830944581e-11, regularization = 0, eps = [Newton decrement] = 4.0687500271930729e-08, KKT residual^2 = 3.2220411960724429e-36 ######## NP-Timings ######## total time : 0.01489s total time NP : 0.01066s (71.59266 %) eval_f time : 0.00047s ( #evals: 4 -> avg 0.00012s ) eval_grad time: 0.00063s ( #evals: 3 -> avg 0.00021s, factor: 1.79772) eval_hess time: 0.00956s ( #evals: 2 -> avg 0.00478s, factor: 40.85043) solve_infeasible_start took 0.014969000000000001 s. Min/Max cell volume: 7.530971855101847043e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530971855101847043e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 27 ... ####Fixed! Min/Max cell volume: 7.530971855101847043e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530971855101847043e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.00064645438276580102) using linear solver Umfpack iter: 0, feasible, f(x) = 6.161959158036554, t = 1 (tmax=1), res_primal = 0, res_dual = 1.4833342031367858e-08, regularization = 0, eps = [Newton decrement] = 3.2415557383936173e-05, KKT residual^2 = 1.8207345653320644e-33 iter: 1, feasible, f(x) = 6.1619589290358974, t = 1 (tmax=1), res_primal = 0, res_dual = 7.7002360480884893e-10, regularization = 0, eps = [Newton decrement] = 3.6671842632158765e-07, KKT residual^2 = 7.6875923540697518e-36 ######## NP-Timings ######## total time : 0.01496s total time NP : 0.01088s (72.72545 %) eval_f time : 0.00046s ( #evals: 4 -> avg 0.00011s ) eval_grad time: 0.00077s ( #evals: 3 -> avg 0.00026s, factor: 2.24546) eval_hess time: 0.00965s ( #evals: 2 -> avg 0.00482s, factor: 42.03486) solve_infeasible_start took 0.015032 s. Min/Max cell volume: 7.530976383291168217e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530976383291168217e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 28 ... ####Fixed! Min/Max cell volume: 7.530976383291168217e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530976383291168217e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.00064459186027842588) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1637949889752885, t = 1 (tmax=1), res_primal = 0, res_dual = 2.130498825990158e-09, regularization = 0, eps = [Newton decrement] = 1.2577009112634875e-05, KKT residual^2 = 4.1940066874110295e-33 iter: 1, feasible, f(x) = 6.1637949624631316, t = 1 (tmax=1), res_primal = 0, res_dual = 7.7037717850660477e-11, regularization = 0, eps = [Newton decrement] = 4.300289313646796e-08, KKT residual^2 = 2.3730641020728917e-36 ######## NP-Timings ######## total time : 0.01474s total time NP : 0.01080s (73.30166 %) eval_f time : 0.00046s ( #evals: 4 -> avg 0.00011s ) eval_grad time: 0.00074s ( #evals: 3 -> avg 0.00025s, factor: 2.14670) eval_hess time: 0.00960s ( #evals: 2 -> avg 0.00480s, factor: 41.84314) solve_infeasible_start took 0.014805999999999927 s. Min/Max cell volume: 7.530978782473633597e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530978782473633597e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 29 ... ####Fixed! Min/Max cell volume: 7.530978782473633597e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530978782473633597e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.00067777274092325817) using linear solver Umfpack iter: 0, feasible, f(x) = 6.153843521361857, t = 1 (tmax=1), res_primal = 0, res_dual = 1.458976873658054e-08, regularization = 0, eps = [Newton decrement] = 3.1927780415239893e-05, KKT residual^2 = 3.6677509110565735e-33 iter: 1, feasible, f(x) = 6.1538432948776114, t = 1 (tmax=1), res_primal = 0, res_dual = 7.6112923817649436e-10, regularization = 0, eps = [Newton decrement] = 3.6254486148742799e-07, KKT residual^2 = 4.9465528277890523e-36 ######## NP-Timings ######## total time : 0.01721s total time NP : 0.01214s (70.54552 %) eval_f time : 0.00051s ( #evals: 4 -> avg 0.00013s ) eval_grad time: 0.00059s ( #evals: 3 -> avg 0.00020s, factor: 1.55204) eval_hess time: 0.01105s ( #evals: 2 -> avg 0.00552s, factor: 43.66798) solve_infeasible_start took 0.017292000000000002 s. Min/Max cell volume: 7.530975564664445275e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530975564664445275e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 30 ... ####Fixed! Min/Max cell volume: 7.530975564664445275e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530975564664445275e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.0006425959145765751) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1556806245564228, t = 1 (tmax=1), res_primal = 0, res_dual = 2.1285909921753767e-09, regularization = 0, eps = [Newton decrement] = 1.257315591270793e-05, KKT residual^2 = 1.8765935595140105e-33 iter: 1, feasible, f(x) = 6.1556805980581322, t = 1 (tmax=1), res_primal = 0, res_dual = 7.6734321088260775e-11, regularization = 0, eps = [Newton decrement] = 4.2979537549983879e-08, KKT residual^2 = 1.7776731422732148e-36 ######## NP-Timings ######## total time : 0.01496s total time NP : 0.01093s (73.03528 %) eval_f time : 0.00045s ( #evals: 4 -> avg 0.00011s ) eval_grad time: 0.00057s ( #evals: 3 -> avg 0.00019s, factor: 1.68593) eval_hess time: 0.00991s ( #evals: 2 -> avg 0.00496s, factor: 44.04444) solve_infeasible_start took 0.015038000000000001 s. Min/Max cell volume: 7.530980860899785486e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530980860899785486e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! ######Pipeline (Quaternion) iter 31 ... ####Fixing local invalid singular nodes at second stage... ########Remove zipper nodes... ####Fix complex singular edges ... ########Fix interior(non ffv) invalid nodes... ########Fix invalid nodes on boundary... ########Fix invalid nodes on feature surface... ########Fix fully constrained parabolic sectors... ########Fix constrained tps... ########Fix zipper nodes... ####Fixed! Min/Max cell volume: 7.530980860899785486e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530980860899785486e-05 / 5.437474463805225255. Min volume cell: 810 ***** optimize via Newton (infeasible start version) with 879 unknowns and 260 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0, r_dual = ||g+A^T nue||^2 = 0.00063961861265708609) using linear solver Umfpack iter: 0, feasible, f(x) = 6.1538438859522593, t = 1 (tmax=1), res_primal = 0, res_dual = 2.0987736865769069e-09, regularization = 0, eps = [Newton decrement] = 1.2434978615977372e-05, KKT residual^2 = 1.6790094626960509e-33 iter: 1, feasible, f(x) = 6.1538438609877479, t = 1 (tmax=1), res_primal = 0, res_dual = 7.1180995080981427e-11, regularization = 0, eps = [Newton decrement] = 4.0604218257749433e-08, KKT residual^2 = 1.8150169761783246e-36 ######## NP-Timings ######## total time : 0.01491s total time NP : 0.01062s (71.21395 %) eval_f time : 0.00048s ( #evals: 4 -> avg 0.00012s ) eval_grad time: 0.00053s ( #evals: 3 -> avg 0.00018s, factor: 1.47589) eval_hess time: 0.00961s ( #evals: 2 -> avg 0.00481s, factor: 40.30608) solve_infeasible_start took 0.014982000000000001 s. Min/Max cell volume: 7.530976896639807801e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell volume: 7.530976896639807801e-05 / 5.437474463805225255. Min volume cell: 810 ####Splitting for DOF ... ####Splitting done! Optimizing quaternions... ####ff opt done! #invalid vertices 0 invalid nodes(nsge<=4): 0 has complex edge 0 number of tps 0 fixable 0 n_fixed 0 ##### Check local meshability of special vertice... check vertex 0***** optimize via Newton (infeasible start version) with 99 unknowns and 78 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.017245210830187981, r_dual = ||g+A^T nue||^2 = 0.00026386826257323757) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0063264627204238991, t = 1 (tmax=1), res_primal = 2.0872048474110466e-31, res_dual = 1.0185359616877177e-05, regularization = 0, KKT residual^2 = 1.4959907516619142e-33 iter: 1, feasible, f(x) = 0.0063236070359269474, t = 1 (tmax=1), res_primal = 1.9831948729830922e-31, res_dual = 1.692428228047694e-11, regularization = 0, eps = [Newton decrement] = 5.7066230515581316e-06, KKT residual^2 = 5.1548424436243745e-37 iter: 2, feasible, f(x) = 0.0063236070312367989, t = 1 (tmax=1), res_primal = 3.5205447211366706e-31, res_dual = 1.3697193081441944e-16, regularization = 0, eps = [Newton decrement] = 9.3649756222747043e-12, KKT residual^2 = 1.099623902453903e-42 solve_infeasible_start took 0.003529 s. check vertex 20***** optimize via Newton (infeasible start version) with 99 unknowns and 78 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.015942730545170525, r_dual = ||g+A^T nue||^2 = 0.0002402650203227719) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0069022054857321574, t = 1 (tmax=1), res_primal = 3.2105177121014287e-31, res_dual = 1.2085096814253646e-05, regularization = 0, KKT residual^2 = 1.2624444956426005e-33 iter: 1, feasible, f(x) = 0.0068971823560443225, t = 1 (tmax=1), res_primal = 2.4156701947446081e-31, res_dual = 2.3368906863456729e-11, regularization = 0, eps = [Newton decrement] = 1.0037069195166607e-05, KKT residual^2 = 6.0002760645275568e-37 iter: 2, feasible, f(x) = 0.0068971823455142717, t = 1 (tmax=1), res_primal = 4.2564363879779831e-31, res_dual = 2.9695874668011717e-16, regularization = 0, eps = [Newton decrement] = 2.1032685359905144e-11, KKT residual^2 = 1.2883928365364941e-42 solve_infeasible_start took 0.0031110000000000001 s. check vertex 21***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.013072474551381301, r_dual = ||g+A^T nue||^2 = 0.00014587091737884684) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0057065523781867755, t = 1 (tmax=1), res_primal = 3.0588525797950347e-31, res_dual = 7.7822439036820118e-06, regularization = 0, KKT residual^2 = 1.0400435713789297e-33 iter: 1, feasible, f(x) = 0.0057029038288142868, t = 1 (tmax=1), res_primal = 3.030474748890839e-31, res_dual = 2.8284294116310495e-11, regularization = 0, eps = [Newton decrement] = 7.2894465937267534e-06, KKT residual^2 = 5.5157353745033553e-37 iter: 2, feasible, f(x) = 0.0057029038173756954, t = 1 (tmax=1), res_primal = 3.6041443767733918e-31, res_dual = 5.4061053701015497e-16, regularization = 0, eps = [Newton decrement] = 2.2819931265370304e-11, KKT residual^2 = 3.6878576825010322e-42 solve_infeasible_start took 0.0034680000000000002 s. check vertex 22***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.013936921768158445, r_dual = ||g+A^T nue||^2 = 0.0001883491665075793) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059608639463184024, t = 1 (tmax=1), res_primal = 2.2171493098791934e-31, res_dual = 9.9909066760070774e-06, regularization = 0, KKT residual^2 = 1.0785975031288651e-33 iter: 1, feasible, f(x) = 0.005957111225937505, t = 1 (tmax=1), res_primal = 2.1287110658288823e-31, res_dual = 3.7469976205323993e-11, regularization = 0, eps = [Newton decrement] = 7.4974705317845589e-06, KKT residual^2 = 2.4414420448822641e-37 iter: 2, feasible, f(x) = 0.0059571112142206162, t = 1 (tmax=1), res_primal = 3.4367217743476283e-31, res_dual = 6.3687248226279927e-16, regularization = 0, eps = [Newton decrement] = 2.3379258167801083e-11, KKT residual^2 = 2.1073589633508587e-42 solve_infeasible_start took 0.00298 s. check vertex 23***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.015755406541015034, r_dual = ||g+A^T nue||^2 = 0.00026485303372867708) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0061371020039287542, t = 1 (tmax=1), res_primal = 2.9841534691802872e-31, res_dual = 1.0433194022602397e-05, regularization = 0, KKT residual^2 = 1.0793016315621376e-33 iter: 1, feasible, f(x) = 0.0061341131472257187, t = 1 (tmax=1), res_primal = 3.3325664727344563e-31, res_dual = 4.0066615344759187e-11, regularization = 0, eps = [Newton decrement] = 5.97079238748365e-06, KKT residual^2 = 3.7926834403970327e-37 iter: 2, feasible, f(x) = 0.0061341131360414325, t = 1 (tmax=1), res_primal = 2.8091612373865275e-31, res_dual = 8.043246015703066e-16, regularization = 0, eps = [Newton decrement] = 2.2299791971123916e-11, KKT residual^2 = 2.0737693001385671e-42 solve_infeasible_start took 0.0030859999999999998 s. check vertex 24***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.012418705132236257, r_dual = ||g+A^T nue||^2 = 0.0002268597264776001) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059038625119329762, t = 1 (tmax=1), res_primal = 2.0963989659826458e-31, res_dual = 8.7833993523562568e-06, regularization = 0, KKT residual^2 = 1.2350759377629493e-33 iter: 1, feasible, f(x) = 0.0059006151340134146, t = 1 (tmax=1), res_primal = 2.4278935269303204e-31, res_dual = 2.5819803942886004e-11, regularization = 0, eps = [Newton decrement] = 6.4886759999986943e-06, KKT residual^2 = 5.0549120837642556e-37 iter: 2, feasible, f(x) = 0.0059006151261061079, t = 1 (tmax=1), res_primal = 3.6296202976482913e-31, res_dual = 3.9118950038251884e-16, regularization = 0, eps = [Newton decrement] = 1.5781239655672429e-11, KKT residual^2 = 1.3100618857674868e-42 solve_infeasible_start took 0.0030950000000000001 s. check vertex 25***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.012333557096401146, r_dual = ||g+A^T nue||^2 = 0.00021402629887552538) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.005997130772485878, t = 1 (tmax=1), res_primal = 3.5877527453041888e-31, res_dual = 9.1353255055125397e-06, regularization = 0, KKT residual^2 = 1.2070926474654705e-33 iter: 1, feasible, f(x) = 0.0059936213420997437, t = 1 (tmax=1), res_primal = 2.1882948839539482e-31, res_dual = 3.527212604909013e-11, regularization = 0, eps = [Newton decrement] = 7.0114417103705051e-06, KKT residual^2 = 4.4151327147293325e-37 iter: 2, feasible, f(x) = 0.0059936213308668758, t = 1 (tmax=1), res_primal = 2.0594659816273351e-31, res_dual = 7.5691782980248627e-16, regularization = 0, eps = [Newton decrement] = 2.2401664692036438e-11, KKT residual^2 = 2.5284980998264669e-42 solve_infeasible_start took 0.003156 s. check vertex 26***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.01429992442308455, r_dual = ||g+A^T nue||^2 = 0.00030898522643409842) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0062147622113788801, t = 1 (tmax=1), res_primal = 4.9123327942013245e-31, res_dual = 1.0512590360451307e-05, regularization = 0, KKT residual^2 = 1.7207021792550514e-33 iter: 1, feasible, f(x) = 0.0062103185280789081, t = 1 (tmax=1), res_primal = 5.1590547405868782e-31, res_dual = 5.0669210258370221e-11, regularization = 0, eps = [Newton decrement] = 8.8769594757881247e-06, KKT residual^2 = 7.2106509353745874e-37 iter: 2, feasible, f(x) = 0.0062103185105200649, t = 1 (tmax=1), res_primal = 4.0596471284153464e-31, res_dual = 1.152239573869063e-15, regularization = 0, eps = [Newton decrement] = 3.5017626172498137e-11, KKT residual^2 = 3.0536142010659106e-42 solve_infeasible_start took 0.0035369999999999998 s. check vertex 27***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.013529260112270913, r_dual = ||g+A^T nue||^2 = 0.00019067227408140766) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059597307407942895, t = 1 (tmax=1), res_primal = 2.7321796246652572e-31, res_dual = 9.2646394970278485e-06, regularization = 0, KKT residual^2 = 9.7147694497098873e-34 iter: 1, feasible, f(x) = 0.0059560967759525957, t = 1 (tmax=1), res_primal = 2.6003594085707273e-31, res_dual = 3.8710387473004937e-11, regularization = 0, eps = [Newton decrement] = 7.2601860129518474e-06, KKT residual^2 = 4.6719036437528945e-37 iter: 2, feasible, f(x) = 0.0059560967637334334, t = 1 (tmax=1), res_primal = 2.0592258213355683e-31, res_dual = 8.3370385072431159e-16, regularization = 0, eps = [Newton decrement] = 2.4369844852099816e-11, KKT residual^2 = 3.5637351396299171e-42 solve_infeasible_start took 0.003686 s. check vertex 28***** optimize via Newton (infeasible start version) with 144 unknowns and 116 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.011565238719587992, r_dual = ||g+A^T nue||^2 = 0.00010108492659955445) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0053425104440099312, t = 1 (tmax=1), res_primal = 6.0509422554888094e-31, res_dual = 6.180115788808601e-06, regularization = 0, KKT residual^2 = 1.1726281490012544e-33 iter: 1, feasible, f(x) = 0.0053390164779084136, t = 1 (tmax=1), res_primal = 4.6716427021049959e-31, res_dual = 2.4896642438692239e-11, regularization = 0, eps = [Newton decrement] = 6.9808409549931193e-06, KKT residual^2 = 4.5108528819231014e-37 iter: 2, feasible, f(x) = 0.0053390164666066199, t = 1 (tmax=1), res_primal = 6.493132516060196e-31, res_dual = 7.015622839375066e-16, regularization = 0, eps = [Newton decrement] = 2.2531569993039779e-11, KKT residual^2 = 2.2998275887871868e-42 solve_infeasible_start took 0.0043479999999999994 s. check vertex 29***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.010735486365575158, r_dual = ||g+A^T nue||^2 = 0.00021028409008000298) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0072877493374532455, t = 1 (tmax=1), res_primal = 1.8731568408764231e-31, res_dual = 1.5259481492661741e-05, regularization = 0, KKT residual^2 = 1.7122773298544115e-33 iter: 1, feasible, f(x) = 0.0072837671078420305, t = 1 (tmax=1), res_primal = 1.6217441815496118e-31, res_dual = 4.8186710705606393e-11, regularization = 0, eps = [Newton decrement] = 7.956364324111774e-06, KKT residual^2 = 6.169381420209378e-37 iter: 2, feasible, f(x) = 0.0072837670943267426, t = 1 (tmax=1), res_primal = 3.7576131490302462e-31, res_dual = 1.9644668258714597e-15, regularization = 0, eps = [Newton decrement] = 2.692898897160821e-11, KKT residual^2 = 3.0847143946272434e-42 solve_infeasible_start took 0.0032280000000000004 s. check vertex 30***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.018777861237858778, r_dual = ||g+A^T nue||^2 = 0.000352673926075473) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0061739209761737497, t = 1 (tmax=1), res_primal = 2.6630252441277413e-31, res_dual = 9.7723750834639718e-06, regularization = 0, KKT residual^2 = 1.128239318376485e-33 iter: 1, feasible, f(x) = 0.0061711580908609927, t = 1 (tmax=1), res_primal = 4.7687616124385345e-31, res_dual = 1.9079895415817585e-11, regularization = 0, eps = [Newton decrement] = 5.5209978611423675e-06, KKT residual^2 = 4.094800295943261e-37 iter: 2, feasible, f(x) = 0.0061711580850634653, t = 1 (tmax=1), res_primal = 2.0802271986747579e-31, res_dual = 2.7989480689905101e-16, regularization = 0, eps = [Newton decrement] = 1.1571334392100018e-11, KKT residual^2 = 1.1578742036291437e-42 solve_infeasible_start took 0.003336 s. check vertex 31***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.020072021930412944, r_dual = ||g+A^T nue||^2 = 0.00036964610676245028) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059763073288356602, t = 1 (tmax=1), res_primal = 3.6864270467986592e-31, res_dual = 1.0679805320782857e-05, regularization = 0, KKT residual^2 = 1.5910790987180949e-33 iter: 1, feasible, f(x) = 0.0059737721234823437, t = 1 (tmax=1), res_primal = 2.3836080554268897e-31, res_dual = 1.4454051137938188e-11, regularization = 0, eps = [Newton decrement] = 5.0665858683219825e-06, KKT residual^2 = 5.3925856521517952e-37 iter: 2, feasible, f(x) = 0.0059737721193421, t = 1 (tmax=1), res_primal = 3.265477067634447e-31, res_dual = 1.5656116780183801e-16, regularization = 0, eps = [Newton decrement] = 8.2633068881403158e-12, KKT residual^2 = 7.024991801396786e-43 solve_infeasible_start took 0.0029759999999999999 s. check vertex 32***** optimize via Newton (infeasible start version) with 72 unknowns and 56 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.016279999655540875, r_dual = ||g+A^T nue||^2 = 0.00076646462723804678) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.011015078002734798, t = 1 (tmax=1), res_primal = 2.0312107906238594e-31, res_dual = 4.7592802441727026e-05, regularization = 0, KKT residual^2 = 3.2340389638761835e-33 iter: 1, feasible, f(x) = 0.011000406004391648, t = 1 (tmax=1), res_primal = 1.7826195278704571e-31, res_dual = 4.3263874617593481e-10, regularization = 0, eps = [Newton decrement] = 2.9283971813747433e-05, KKT residual^2 = 2.2350442837825195e-36 iter: 2, feasible, f(x) = 0.011000405850004662, t = 1 (tmax=1), res_primal = 1.8606522897644304e-31, res_dual = 1.9654855076957253e-14, regularization = 0, eps = [Newton decrement] = 3.0782742253146658e-10, KKT residual^2 = 5.1621990497802729e-41 solve_infeasible_start took 0.0025850000000000001 s. check vertex 33***** optimize via Newton (infeasible start version) with 126 unknowns and 101 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.016039658364646787, r_dual = ||g+A^T nue||^2 = 0.0002460661375514852) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059690893518104422, t = 1 (tmax=1), res_primal = 3.3609835338531497e-31, res_dual = 1.3778394083365315e-05, regularization = 0, KKT residual^2 = 1.597640648736998e-33 iter: 1, feasible, f(x) = 0.0059662004484694478, t = 1 (tmax=1), res_primal = 3.9976962901577076e-31, res_dual = 3.2456837544359496e-11, regularization = 0, eps = [Newton decrement] = 5.7725998970733289e-06, KKT residual^2 = 1.2319628460984428e-36 iter: 2, feasible, f(x) = 0.0059662004399270475, t = 1 (tmax=1), res_primal = 4.1297995283801305e-31, res_dual = 6.7422029094416473e-16, regularization = 0, eps = [Newton decrement] = 1.7006526642695243e-11, KKT residual^2 = 2.2472476888065082e-42 solve_infeasible_start took 0.0039589999999999998 s. check vertex 34***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.011824490070833329, r_dual = ||g+A^T nue||^2 = 0.00026132486529544527) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059266969262814244, t = 1 (tmax=1), res_primal = 3.1207149504034934e-31, res_dual = 7.8435215906002001e-06, regularization = 0, KKT residual^2 = 2.0817891624605658e-33 iter: 1, feasible, f(x) = 0.0059239129392970056, t = 1 (tmax=1), res_primal = 4.1909326805625128e-31, res_dual = 2.1091227246102025e-11, regularization = 0, eps = [Newton decrement] = 5.5629471225721006e-06, KKT residual^2 = 4.2458669970303541e-37 iter: 2, feasible, f(x) = 0.005923912932653941, t = 1 (tmax=1), res_primal = 4.7342143001027057e-31, res_dual = 3.8529982785701803e-16, regularization = 0, eps = [Newton decrement] = 1.3254264545632939e-11, KKT residual^2 = 1.4797028225589973e-42 solve_infeasible_start took 0.003271 s. check vertex 35***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.016132732238210094, r_dual = ||g+A^T nue||^2 = 0.00033124118279935917) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.006079380029615368, t = 1 (tmax=1), res_primal = 4.6781508773303306e-31, res_dual = 1.0214835086847306e-05, regularization = 0, KKT residual^2 = 1.4810057052832387e-33 iter: 1, feasible, f(x) = 0.0060768222881075109, t = 1 (tmax=1), res_primal = 3.6958475741392996e-31, res_dual = 1.5027721450846293e-11, regularization = 0, eps = [Newton decrement] = 5.1113707602040347e-06, KKT residual^2 = 6.9162936507998508e-37 iter: 2, feasible, f(x) = 0.006076822283332165, t = 1 (tmax=1), res_primal = 3.5676501627971153e-31, res_dual = 1.9800453071017712e-16, regularization = 0, eps = [Newton decrement] = 9.5313571503577377e-12, KKT residual^2 = 1.1614582555237403e-42 solve_infeasible_start took 0.0033580000000000003 s. check vertex 36***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.015853619932570756, r_dual = ||g+A^T nue||^2 = 0.00023929638371800516) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0062430242768920568, t = 1 (tmax=1), res_primal = 3.2076142298795511e-31, res_dual = 9.5239648104791257e-06, regularization = 0, KKT residual^2 = 1.0660722951944282e-33 iter: 1, feasible, f(x) = 0.006239717427380281, t = 1 (tmax=1), res_primal = 3.3089407080244029e-31, res_dual = 2.849871863138232e-11, regularization = 0, eps = [Newton decrement] = 6.6071361031422558e-06, KKT residual^2 = 6.0996515487839981e-37 iter: 2, feasible, f(x) = 0.0062397174181436582, t = 1 (tmax=1), res_primal = 2.0652903119026968e-31, res_dual = 5.2541885896427244e-16, regularization = 0, eps = [Newton decrement] = 1.8428346330650996e-11, KKT residual^2 = 1.5496754361304986e-42 solve_infeasible_start took 0.0030920000000000001 s. check vertex 37***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.011949176582111627, r_dual = ||g+A^T nue||^2 = 0.00015168244343673304) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0057447722729185319, t = 1 (tmax=1), res_primal = 3.0506890940586731e-31, res_dual = 9.7442949485370485e-06, regularization = 0, KKT residual^2 = 9.7299041820153749e-34 iter: 1, feasible, f(x) = 0.005740683386409224, t = 1 (tmax=1), res_primal = 3.0319616721527219e-31, res_dual = 3.6742755574703649e-11, regularization = 0, eps = [Newton decrement] = 8.1691886651316682e-06, KKT residual^2 = 5.593489511828709e-37 iter: 2, feasible, f(x) = 0.0057406833734316622, t = 1 (tmax=1), res_primal = 3.7509670737799814e-31, res_dual = 7.3108742732046274e-16, regularization = 0, eps = [Newton decrement] = 2.588954708759887e-11, KKT residual^2 = 2.1957158936990144e-42 solve_infeasible_start took 0.0033700000000000002 s. check vertex 38***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.0096904793309400515, r_dual = ||g+A^T nue||^2 = 0.00012385380604174357) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0056615354066094983, t = 1 (tmax=1), res_primal = 4.5100234286392741e-31, res_dual = 7.9980724358473427e-06, regularization = 0, KKT residual^2 = 8.6266702837556176e-34 iter: 1, feasible, f(x) = 0.0056576730819478905, t = 1 (tmax=1), res_primal = 2.9181016591118468e-31, res_dual = 3.6254766632566129e-11, regularization = 0, eps = [Newton decrement] = 7.7158946405547669e-06, KKT residual^2 = 6.0044490062973249e-37 iter: 2, feasible, f(x) = 0.005657673067846764, t = 1 (tmax=1), res_primal = 4.2297206164603501e-31, res_dual = 7.8952780542713439e-16, regularization = 0, eps = [Newton decrement] = 2.812505879745341e-11, KKT residual^2 = 2.9691200043949892e-42 solve_infeasible_start took 0.0039450000000000006 s. check vertex 39***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.011428255502088857, r_dual = ||g+A^T nue||^2 = 0.0001901082343687893) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059618962963287146, t = 1 (tmax=1), res_primal = 2.3934909827675492e-31, res_dual = 9.5356875850556435e-06, regularization = 0, KKT residual^2 = 1.4812208399870141e-33 iter: 1, feasible, f(x) = 0.0059580867927383659, t = 1 (tmax=1), res_primal = 4.5639682971124365e-31, res_dual = 3.5741312664264501e-11, regularization = 0, eps = [Newton decrement] = 7.6111992586877769e-06, KKT residual^2 = 3.8163636263266026e-37 iter: 2, feasible, f(x) = 0.005958086781156299, t = 1 (tmax=1), res_primal = 2.5525621516924065e-31, res_dual = 7.0254275928343136e-16, regularization = 0, eps = [Newton decrement] = 2.3107194364543673e-11, KKT residual^2 = 2.6235222530748587e-42 solve_infeasible_start took 0.003101 s. check vertex 40***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.01442031162621686, r_dual = ||g+A^T nue||^2 = 0.00019802420178833497) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0066898925955824872, t = 1 (tmax=1), res_primal = 1.9417167854571495e-31, res_dual = 1.0312178585092398e-05, regularization = 0, KKT residual^2 = 1.1228958565837793e-33 iter: 1, feasible, f(x) = 0.0066851134720597198, t = 1 (tmax=1), res_primal = 3.0077703505410147e-31, res_dual = 2.784924149290948e-11, regularization = 0, eps = [Newton decrement] = 9.5489073343295287e-06, KKT residual^2 = 4.3299193411559045e-37 iter: 2, feasible, f(x) = 0.0066851134602780686, t = 1 (tmax=1), res_primal = 2.9142399196613071e-31, res_dual = 3.8968669126842289e-16, regularization = 0, eps = [Newton decrement] = 2.3527095370530339e-11, KKT residual^2 = 2.0980874874143205e-42 solve_infeasible_start took 0.003101 s. check vertex 41***** optimize via Newton (infeasible start version) with 135 unknowns and 108 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.013612850483632829, r_dual = ||g+A^T nue||^2 = 0.00010649026789924297) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0062652614048859826, t = 1 (tmax=1), res_primal = 5.4213224885246916e-31, res_dual = 9.1082187495716706e-06, regularization = 0, KKT residual^2 = 1.499469852597731e-33 iter: 1, feasible, f(x) = 0.0062621121053224402, t = 1 (tmax=1), res_primal = 4.4287700236300223e-31, res_dual = 1.9438915172800101e-11, regularization = 0, eps = [Newton decrement] = 6.292975728085246e-06, KKT residual^2 = 8.0238209665349447e-37 iter: 2, feasible, f(x) = 0.00626211209925973, t = 1 (tmax=1), res_primal = 3.7987545782325307e-31, res_dual = 2.1656209465704297e-16, regularization = 0, eps = [Newton decrement] = 1.2103047474491217e-11, KKT residual^2 = 1.0476694915293528e-42 solve_infeasible_start took 0.0041570000000000001 s. check vertex 61***** optimize via Newton (infeasible start version) with 99 unknowns and 78 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.016515511005901873, r_dual = ||g+A^T nue||^2 = 0.00022458435634087895) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0068727898553562934, t = 1 (tmax=1), res_primal = 2.8321149154202402e-31, res_dual = 1.182662478802342e-05, regularization = 0, KKT residual^2 = 8.6920888523454028e-34 iter: 1, feasible, f(x) = 0.0068682229835703313, t = 1 (tmax=1), res_primal = 2.3414342919165332e-31, res_dual = 2.2389108995760314e-11, regularization = 0, eps = [Newton decrement] = 9.1257084198289969e-06, KKT residual^2 = 5.9141273378777e-37 iter: 2, feasible, f(x) = 0.0068682229745050368, t = 1 (tmax=1), res_primal = 2.4069580587217503e-31, res_dual = 3.1697383654261745e-16, regularization = 0, eps = [Newton decrement] = 1.810576308025303e-11, KKT residual^2 = 2.0403336137422632e-42 solve_infeasible_start took 0.0038370000000000001 s. check vertex 62***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.01246882817039008, r_dual = ||g+A^T nue||^2 = 0.00024808333560213079) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0063454442067505945, t = 1 (tmax=1), res_primal = 4.885307119748069e-31, res_dual = 9.4702378845715018e-06, regularization = 0, KKT residual^2 = 1.1426589515352759e-33 iter: 1, feasible, f(x) = 0.0063404191579912788, t = 1 (tmax=1), res_primal = 4.0784412801130013e-31, res_dual = 4.6899595144717368e-11, regularization = 0, eps = [Newton decrement] = 1.0038589081450862e-05, KKT residual^2 = 7.3147972929308065e-37 iter: 2, feasible, f(x) = 0.0063404191395429969, t = 1 (tmax=1), res_primal = 4.6203956410190641e-31, res_dual = 1.120750559955756e-15, regularization = 0, eps = [Newton decrement] = 3.6801688347147008e-11, KKT residual^2 = 4.927762089541545e-42 solve_infeasible_start took 0.0036329999999999999 s. check vertex 63***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.012606976596290313, r_dual = ||g+A^T nue||^2 = 0.00016363310208391738) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0071972154889389135, t = 1 (tmax=1), res_primal = 2.9849603460804762e-31, res_dual = 1.398463713500299e-05, regularization = 0, KKT residual^2 = 1.7510980864852408e-33 iter: 1, feasible, f(x) = 0.0071923368614442689, t = 1 (tmax=1), res_primal = 3.067860529263537e-31, res_dual = 6.0027360703335208e-11, regularization = 0, eps = [Newton decrement] = 9.7462912631674435e-06, KKT residual^2 = 5.7650238957948271e-37 iter: 2, feasible, f(x) = 0.0071923368411734839, t = 1 (tmax=1), res_primal = 2.9238325624930781e-31, res_dual = 2.8277493073420897e-15, regularization = 0, eps = [Newton decrement] = 4.0378768864048395e-11, KKT residual^2 = 6.6237473210262972e-42 solve_infeasible_start took 0.0032960000000000003 s. check vertex 64***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.014477134625154117, r_dual = ||g+A^T nue||^2 = 0.00017740914463000601) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0070804330412033208, t = 1 (tmax=1), res_primal = 4.2302977094551974e-31, res_dual = 1.3284295886380801e-05, regularization = 0, KKT residual^2 = 1.5242080274097266e-33 iter: 1, feasible, f(x) = 0.0070754758949162326, t = 1 (tmax=1), res_primal = 3.7191941789386223e-31, res_dual = 6.0229534061270455e-11, regularization = 0, eps = [Newton decrement] = 9.902970406584215e-06, KKT residual^2 = 1.0545407140736851e-36 iter: 2, feasible, f(x) = 0.0070754758742951071, t = 1 (tmax=1), res_primal = 3.7212576999559536e-31, res_dual = 2.699241851180478e-15, regularization = 0, eps = [Newton decrement] = 4.1084817007562871e-11, KKT residual^2 = 4.5468416099591185e-42 solve_infeasible_start took 0.0038340000000000002 s. check vertex 65***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.012769337304329642, r_dual = ||g+A^T nue||^2 = 0.00024345795809413938) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059294795942839845, t = 1 (tmax=1), res_primal = 2.7828345430790464e-31, res_dual = 9.1274779657261925e-06, regularization = 0, KKT residual^2 = 1.0919336723831576e-33 iter: 1, feasible, f(x) = 0.0059258826144695511, t = 1 (tmax=1), res_primal = 2.3812637954936308e-31, res_dual = 3.2391826815733652e-11, regularization = 0, eps = [Newton decrement] = 7.1868429284008637e-06, KKT residual^2 = 4.3779427022444977e-37 iter: 2, feasible, f(x) = 0.0059258826043325566, t = 1 (tmax=1), res_primal = 3.5722485516953976e-31, res_dual = 5.9287325472580143e-16, regularization = 0, eps = [Newton decrement] = 2.0227097968568593e-11, KKT residual^2 = 2.6659414958328117e-42 solve_infeasible_start took 0.0033940000000000003 s. check vertex 66***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.014151610658080209, r_dual = ||g+A^T nue||^2 = 0.00025072267016981324) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059190509483443279, t = 1 (tmax=1), res_primal = 2.7813240316000647e-31, res_dual = 8.8745651413704399e-06, regularization = 0, KKT residual^2 = 7.6679374016396139e-34 iter: 1, feasible, f(x) = 0.0059154387074960959, t = 1 (tmax=1), res_primal = 2.5559600500619826e-31, res_dual = 3.0132503018294082e-11, regularization = 0, eps = [Newton decrement] = 7.2174073000246981e-06, KKT residual^2 = 5.079211956162851e-37 iter: 2, feasible, f(x) = 0.0059154386977807805, t = 1 (tmax=1), res_primal = 3.8699445151482268e-31, res_dual = 5.0853347197538804e-16, regularization = 0, eps = [Newton decrement] = 1.9387464366923988e-11, KKT residual^2 = 1.6322213030301456e-42 solve_infeasible_start took 0.0030639999999999999 s. check vertex 67***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.019437091140789259, r_dual = ||g+A^T nue||^2 = 0.00049177729397312556) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0063695979521712172, t = 1 (tmax=1), res_primal = 3.4920201629417905e-31, res_dual = 1.4880494921140266e-05, regularization = 0, KKT residual^2 = 2.5033678204987712e-33 iter: 1, feasible, f(x) = 0.0063666253238223317, t = 1 (tmax=1), res_primal = 3.2215455582908918e-31, res_dual = 1.6595416711654623e-11, regularization = 0, eps = [Newton decrement] = 5.9415529057218827e-06, KKT residual^2 = 8.6974523780297666e-37 iter: 2, feasible, f(x) = 0.0063666253191733213, t = 1 (tmax=1), res_primal = 2.693601263130869e-31, res_dual = 2.1986637490738423e-16, regularization = 0, eps = [Newton decrement] = 9.2736509883135195e-12, KKT residual^2 = 1.597473386449984e-42 solve_infeasible_start took 0.0031270000000000004 s. check vertex 68***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.016265689772975978, r_dual = ||g+A^T nue||^2 = 0.00027183058177415726) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059316508988165586, t = 1 (tmax=1), res_primal = 3.2349947535029599e-31, res_dual = 8.2630218774101706e-06, regularization = 0, KKT residual^2 = 1.5087754124665351e-33 iter: 1, feasible, f(x) = 0.0059289600687080033, t = 1 (tmax=1), res_primal = 2.4991396264692941e-31, res_dual = 2.0709619775928067e-11, regularization = 0, eps = [Newton decrement] = 5.3767719791067745e-06, KKT residual^2 = 3.6894273401063689e-37 iter: 2, feasible, f(x) = 0.0059289600623084089, t = 1 (tmax=1), res_primal = 2.3394931283672268e-31, res_dual = 4.1117741015630592e-16, regularization = 0, eps = [Newton decrement] = 1.2766488415285574e-11, KKT residual^2 = 1.8042129420174242e-42 solve_infeasible_start took 0.0033709999999999999 s. check vertex 69***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.013327349349144106, r_dual = ||g+A^T nue||^2 = 0.00018291292940650523) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.005906409891512511, t = 1 (tmax=1), res_primal = 2.9821781998508952e-31, res_dual = 9.798860284889758e-06, regularization = 0, KKT residual^2 = 8.4907257428893075e-34 iter: 1, feasible, f(x) = 0.0059026651000396845, t = 1 (tmax=1), res_primal = 3.3624187120182932e-31, res_dual = 4.0343161508177746e-11, regularization = 0, eps = [Newton decrement] = 7.4817202103019132e-06, KKT residual^2 = 4.427021121822235e-37 iter: 2, feasible, f(x) = 0.0059026650880226843, t = 1 (tmax=1), res_primal = 3.3831442936377842e-31, res_dual = 8.0454030919634973e-16, regularization = 0, eps = [Newton decrement] = 2.3972981508410799e-11, KKT residual^2 = 3.0627483145862357e-42 solve_infeasible_start took 0.0041530000000000004 s. check vertex 70***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.014058093050542775, r_dual = ||g+A^T nue||^2 = 0.00023767276872932431) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0060248250878510035, t = 1 (tmax=1), res_primal = 2.9119899045827499e-31, res_dual = 9.1838300657219696e-06, regularization = 0, KKT residual^2 = 1.1153356598560989e-33 iter: 1, feasible, f(x) = 0.0060219205887709565, t = 1 (tmax=1), res_primal = 3.3164910331503599e-31, res_dual = 3.0765001357074261e-11, regularization = 0, eps = [Newton decrement] = 5.8029593647533686e-06, KKT residual^2 = 4.5102575492308047e-37 iter: 2, feasible, f(x) = 0.0060219205796780955, t = 1 (tmax=1), res_primal = 3.819493792790977e-31, res_dual = 7.4137319822566405e-16, regularization = 0, eps = [Newton decrement] = 1.8126363055229415e-11, KKT residual^2 = 2.8755106507248157e-42 solve_infeasible_start took 0.0034199999999999999 s. check vertex 71***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.019706620792605569, r_dual = ||g+A^T nue||^2 = 0.00035506267844801013) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059703357448358512, t = 1 (tmax=1), res_primal = 3.3797237222511243e-31, res_dual = 1.6801391016114158e-05, regularization = 0, KKT residual^2 = 1.3067301887480431e-33 iter: 1, feasible, f(x) = 0.0059671580603690684, t = 1 (tmax=1), res_primal = 2.1411575498155372e-31, res_dual = 2.2247235967124861e-11, regularization = 0, eps = [Newton decrement] = 6.3515299731326041e-06, KKT residual^2 = 8.2439479993653389e-37 iter: 2, feasible, f(x) = 0.0059671580533077247, t = 1 (tmax=1), res_primal = 2.4194404242969054e-31, res_dual = 6.4827993597025244e-16, regularization = 0, eps = [Newton decrement] = 1.4061153824618926e-11, KKT residual^2 = 1.4357586957455887e-42 solve_infeasible_start took 0.0030969999999999999 s. check vertex 72***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.014666380631159567, r_dual = ||g+A^T nue||^2 = 0.00031093669607390288) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0063012014358559375, t = 1 (tmax=1), res_primal = 3.4429913233493497e-31, res_dual = 1.1417532643447494e-05, regularization = 0, KKT residual^2 = 1.2810393621672981e-33 iter: 1, feasible, f(x) = 0.0062964781855712705, t = 1 (tmax=1), res_primal = 3.2248067682720902e-31, res_dual = 5.041116199665016e-11, regularization = 0, eps = [Newton decrement] = 9.4353307032174827e-06, KKT residual^2 = 4.5977771153118806e-37 iter: 2, feasible, f(x) = 0.0062964781672141604, t = 1 (tmax=1), res_primal = 4.4089242697831554e-31, res_dual = 1.0563463888759824e-15, regularization = 0, eps = [Newton decrement] = 3.6619714811103583e-11, KKT residual^2 = 5.6007396896044346e-42 solve_infeasible_start took 0.0038120000000000003 s. check vertex 73***** optimize via Newton (infeasible start version) with 126 unknowns and 101 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.012336777683168286, r_dual = ||g+A^T nue||^2 = 0.00017143979133656565) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0055264041163173789, t = 1 (tmax=1), res_primal = 3.3612272418513839e-31, res_dual = 7.7378217022512317e-06, regularization = 0, KKT residual^2 = 1.2276193677626628e-33 iter: 1, feasible, f(x) = 0.0055226315386993959, t = 1 (tmax=1), res_primal = 5.50387095357031e-31, res_dual = 3.0383509209918767e-11, regularization = 0, eps = [Newton decrement] = 7.5374360659334124e-06, KKT residual^2 = 4.4700713981655278e-37 iter: 2, feasible, f(x) = 0.0055226315266756632, t = 1 (tmax=1), res_primal = 3.6914930855831874e-31, res_dual = 7.1332880920582426e-16, regularization = 0, eps = [Newton decrement] = 2.3978580371025077e-11, KKT residual^2 = 3.0178765954152638e-42 solve_infeasible_start took 0.0038920000000000001 s. check vertex 74***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.011264790155884307, r_dual = ||g+A^T nue||^2 = 0.00015369690045198746) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0057880083505480922, t = 1 (tmax=1), res_primal = 2.7121601610526317e-31, res_dual = 7.9207784576727692e-06, regularization = 0, KKT residual^2 = 1.2250141968713623e-33 iter: 1, feasible, f(x) = 0.0057843155460697319, t = 1 (tmax=1), res_primal = 5.0179375024110548e-31, res_dual = 3.1728920423795188e-11, regularization = 0, eps = [Newton decrement] = 7.37761320194051e-06, KKT residual^2 = 4.1855109891524878e-37 iter: 2, feasible, f(x) = 0.0057843155325334019, t = 1 (tmax=1), res_primal = 3.7512960717756138e-31, res_dual = 8.0255956266257738e-16, regularization = 0, eps = [Newton decrement] = 2.6983929649023105e-11, KKT residual^2 = 3.9361160686820533e-42 solve_infeasible_start took 0.0039550000000000002 s. check vertex 75***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.01933788548133953, r_dual = ||g+A^T nue||^2 = 0.00038732513017761906) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.010760439192813116, t = 1 (tmax=1), res_primal = 1.8675388483129246e-31, res_dual = 4.9312736172831731e-05, regularization = 0, KKT residual^2 = 2.832256187106952e-33 iter: 1, feasible, f(x) = 0.010749304433775838, t = 1 (tmax=1), res_primal = 4.1130144520362145e-31, res_dual = 4.943573196538736e-10, regularization = 0, eps = [Newton decrement] = 2.2225076048922678e-05, KKT residual^2 = 4.7783193332625833e-36 iter: 2, feasible, f(x) = 0.010749304304236046, t = 1 (tmax=1), res_primal = 4.6039949283407454e-31, res_dual = 3.8487770281102423e-14, regularization = 0, eps = [Newton decrement] = 2.5759745265573949e-10, KKT residual^2 = 3.216342611238851e-41 solve_infeasible_start took 0.003052 s. check vertex 76***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.014113971275144794, r_dual = ||g+A^T nue||^2 = 0.00026884446306252264) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0063928789644515666, t = 1 (tmax=1), res_primal = 3.848770115736815e-31, res_dual = 9.7836274817375453e-06, regularization = 0, KKT residual^2 = 1.1014053757245732e-33 iter: 1, feasible, f(x) = 0.0063896098052252746, t = 1 (tmax=1), res_primal = 3.6384656164896275e-31, res_dual = 4.0038099190672556e-11, regularization = 0, eps = [Newton decrement] = 6.5308855408117566e-06, KKT residual^2 = 4.8607542942149432e-37 iter: 2, feasible, f(x) = 0.0063896097935746063, t = 1 (tmax=1), res_primal = 2.4919446975596507e-31, res_dual = 9.3729553203975279e-16, regularization = 0, eps = [Newton decrement] = 2.3228447853605539e-11, KKT residual^2 = 3.5129622450990645e-42 solve_infeasible_start took 0.0031350000000000002 s. check vertex 77***** optimize via Newton (infeasible start version) with 72 unknowns and 56 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.013714400641311787, r_dual = ||g+A^T nue||^2 = 0.0010084844516379489) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0086829575816322058, t = 1 (tmax=1), res_primal = 1.4074493977649823e-31, res_dual = 2.1763217697417183e-05, regularization = 0, KKT residual^2 = 1.6766639059335015e-33 iter: 1, feasible, f(x) = 0.0086754091605853473, t = 1 (tmax=1), res_primal = 2.2630460835057022e-31, res_dual = 1.1672593783454983e-10, regularization = 0, eps = [Newton decrement] = 1.5074447661860067e-05, KKT residual^2 = 9.6086147706659075e-37 iter: 2, feasible, f(x) = 0.008675409117076557, t = 1 (tmax=1), res_primal = 1.5690767648273092e-31, res_dual = 2.4825539058173602e-15, regularization = 0, eps = [Newton decrement] = 8.6792770461055585e-11, KKT residual^2 = 8.1957499316402456e-42 solve_infeasible_start took 0.0029809999999999997 s. check vertex 78***** optimize via Newton (infeasible start version) with 72 unknowns and 56 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.023501068416158368, r_dual = ||g+A^T nue||^2 = 0.00072538418868698653) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0079505473897158278, t = 1 (tmax=1), res_primal = 1.443097716154657e-31, res_dual = 1.5326102587003964e-05, regularization = 0, KKT residual^2 = 1.5128333367331962e-33 iter: 1, feasible, f(x) = 0.00794651483243476, t = 1 (tmax=1), res_primal = 1.8262129697291319e-31, res_dual = 4.2818375854471278e-11, regularization = 0, eps = [Newton decrement] = 8.0570608885266706e-06, KKT residual^2 = 4.5339370272967934e-37 iter: 2, feasible, f(x) = 0.0079465148222484447, t = 1 (tmax=1), res_primal = 9.952461030585189e-32, res_dual = 6.1655734401809644e-16, regularization = 0, eps = [Newton decrement] = 2.0331333890904161e-11, KKT residual^2 = 1.9746711559792571e-42 solve_infeasible_start took 0.0029849999999999998 s. check vertex 79***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.011725148371354582, r_dual = ||g+A^T nue||^2 = 0.00028025531009941731) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059959459410070482, t = 1 (tmax=1), res_primal = 2.7372507771525057e-31, res_dual = 8.5803703212879398e-06, regularization = 0, KKT residual^2 = 1.1616990209455251e-33 iter: 1, feasible, f(x) = 0.0059930319043550355, t = 1 (tmax=1), res_primal = 3.1020482024480331e-31, res_dual = 2.2113001374345936e-11, regularization = 0, eps = [Newton decrement] = 5.8225832411755082e-06, KKT residual^2 = 4.0256270534304203e-37 iter: 2, feasible, f(x) = 0.0059930318971904732, t = 1 (tmax=1), res_primal = 3.2273917882360593e-31, res_dual = 3.7651617332580795e-16, regularization = 0, eps = [Newton decrement] = 1.4297484572788621e-11, KKT residual^2 = 1.861284259851866e-42 solve_infeasible_start took 0.0032820000000000002 s. check vertex 80***** optimize via Newton (infeasible start version) with 72 unknowns and 56 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.018858312460575122, r_dual = ||g+A^T nue||^2 = 0.00087846216042585207) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0095966078455375602, t = 1 (tmax=1), res_primal = 1.0351592854032125e-31, res_dual = 3.1862805181187594e-05, regularization = 0, KKT residual^2 = 2.2988742947079428e-33 iter: 1, feasible, f(x) = 0.0095880627302886365, t = 1 (tmax=1), res_primal = 2.7006088012362436e-31, res_dual = 2.3215104088079911e-10, regularization = 0, eps = [Newton decrement] = 1.7063187880923624e-05, KKT residual^2 = 1.7599638069616637e-36 iter: 2, feasible, f(x) = 0.0095880626648618197, t = 1 (tmax=1), res_primal = 2.8498393841503359e-31, res_dual = 1.3511824821147783e-14, regularization = 0, eps = [Newton decrement] = 1.3019634037853362e-10, KKT residual^2 = 1.1696564592365781e-41 solve_infeasible_start took 0.0030580000000000004 s. check vertex 81***** optimize via Newton (infeasible start version) with 126 unknowns and 101 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.014114763266362485, r_dual = ||g+A^T nue||^2 = 0.00015055083067221759) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0053784393447392151, t = 1 (tmax=1), res_primal = 3.6951463814348407e-31, res_dual = 7.0879787679446004e-06, regularization = 0, KKT residual^2 = 1.2553703696433255e-33 iter: 1, feasible, f(x) = 0.0053761467555344588, t = 1 (tmax=1), res_primal = 5.5686571399207167e-31, res_dual = 9.00871905326379e-12, regularization = 0, eps = [Newton decrement] = 4.5809475704432337e-06, KKT residual^2 = 9.1530537422047817e-37 iter: 2, feasible, f(x) = 0.005376146750851513, t = 1 (tmax=1), res_primal = 3.2131911566745634e-31, res_dual = 1.5755933533414695e-16, regularization = 0, eps = [Newton decrement] = 9.3417671085357341e-12, KKT residual^2 = 1.124294198758316e-42 solve_infeasible_start took 0.0042380000000000004 s. check vertex 476***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.010649734967022062, r_dual = ||g+A^T nue||^2 = 8.9393364876592281e-05) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0057040500910382451, t = 1 (tmax=1), res_primal = 3.6485524339885272e-31, res_dual = 7.7969364265397815e-06, regularization = 0, KKT residual^2 = 1.0865328884805824e-33 iter: 1, feasible, f(x) = 0.0057000201060304588, t = 1 (tmax=1), res_primal = 3.1863506665702541e-31, res_dual = 2.5156061740350001e-11, regularization = 0, eps = [Newton decrement] = 8.0518134808886582e-06, KKT residual^2 = 6.0129686237154652e-37 iter: 2, feasible, f(x) = 0.0057000200947287579, t = 1 (tmax=1), res_primal = 3.1193828041411353e-31, res_dual = 4.3975830916608703e-16, regularization = 0, eps = [Newton decrement] = 2.2556441968388594e-11, KKT residual^2 = 3.2240633916160673e-42 solve_infeasible_start took 0.0035529999999999971 s. check vertex 477***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.01435659446263533, r_dual = ||g+A^T nue||^2 = 0.00020864541594885479) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059898150341285948, t = 1 (tmax=1), res_primal = 1.7311697548277391e-31, res_dual = 9.3056762781824139e-06, regularization = 0, KKT residual^2 = 9.1861405213107396e-34 iter: 1, feasible, f(x) = 0.0059862656294832079, t = 1 (tmax=1), res_primal = 2.0761243804453395e-31, res_dual = 3.2011794712932672e-11, regularization = 0, eps = [Newton decrement] = 7.0915958875334749e-06, KKT residual^2 = 3.9823366311853207e-37 iter: 2, feasible, f(x) = 0.005986265619119001, t = 1 (tmax=1), res_primal = 3.4131236871474407e-31, res_dual = 5.5193087329201765e-16, regularization = 0, eps = [Newton decrement] = 2.0677910253022499e-11, KKT residual^2 = 1.832975190031681e-42 solve_infeasible_start took 0.0029660000000000003 s. check vertex 478***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.011511825069681781, r_dual = ||g+A^T nue||^2 = 0.00013174048230324404) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0055816309305944355, t = 1 (tmax=1), res_primal = 4.7182759061290176e-31, res_dual = 8.0527446938451451e-06, regularization = 0, KKT residual^2 = 8.3618782433921489e-34 iter: 1, feasible, f(x) = 0.0055777368455962508, t = 1 (tmax=1), res_primal = 3.8060208158331984e-31, res_dual = 3.7202463890479767e-11, regularization = 0, eps = [Newton decrement] = 7.7792251083488971e-06, KKT residual^2 = 5.312408197140825e-37 iter: 2, feasible, f(x) = 0.0055777368302801656, t = 1 (tmax=1), res_primal = 3.1457980622325809e-31, res_dual = 9.6593378481799205e-16, regularization = 0, eps = [Newton decrement] = 3.0534736364210225e-11, KKT residual^2 = 2.9972495904033337e-42 solve_infeasible_start took 0.0035060000000000004 s. check vertex 479***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.01355865921446611, r_dual = ||g+A^T nue||^2 = 0.00024872123178197993) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0063744842394354686, t = 1 (tmax=1), res_primal = 2.365622589935665e-31, res_dual = 1.0087312874510181e-05, regularization = 0, KKT residual^2 = 1.177763244972027e-33 iter: 1, feasible, f(x) = 0.0063698870199929694, t = 1 (tmax=1), res_primal = 3.8634926597367063e-31, res_dual = 4.0771023962372887e-11, regularization = 0, eps = [Newton decrement] = 9.1848868741902406e-06, KKT residual^2 = 6.5805010712457691e-37 iter: 2, feasible, f(x) = 0.0063698870056247232, t = 1 (tmax=1), res_primal = 2.7370378898190406e-31, res_dual = 9.6917844541940538e-16, regularization = 0, eps = [Newton decrement] = 2.866401251794635e-11, KKT residual^2 = 3.0520385648637704e-42 solve_infeasible_start took 0.0030960000000000002 s. check vertex 480***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.012944921882350587, r_dual = ||g+A^T nue||^2 = 0.00020445172883143116) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059831336757882637, t = 1 (tmax=1), res_primal = 3.1158110054472726e-31, res_dual = 9.6071932188873634e-06, regularization = 0, KKT residual^2 = 1.0758335379822096e-33 iter: 1, feasible, f(x) = 0.005979667679215225, t = 1 (tmax=1), res_primal = 2.7341814970142198e-31, res_dual = 4.071087593753783e-11, regularization = 0, eps = [Newton decrement] = 6.9248062046812485e-06, KKT residual^2 = 6.0225239127353043e-37 iter: 2, feasible, f(x) = 0.0059796676681414555, t = 1 (tmax=1), res_primal = 4.7419389856018831e-31, res_dual = 1.0062277166117075e-15, regularization = 0, eps = [Newton decrement] = 2.2079956927974629e-11, KKT residual^2 = 2.9899207620396089e-42 solve_infeasible_start took 0.003859 s. check vertex 481***** optimize via Newton (infeasible start version) with 72 unknowns and 56 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.019001895112385377, r_dual = ||g+A^T nue||^2 = 0.00075118397804781591) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0076424544368810816, t = 1 (tmax=1), res_primal = 2.1537836992324018e-31, res_dual = 1.6503644679379461e-05, regularization = 0, KKT residual^2 = 1.420878261182885e-33 iter: 1, feasible, f(x) = 0.0076375511494191344, t = 1 (tmax=1), res_primal = 1.6996951400838508e-31, res_dual = 5.2889109940151377e-11, regularization = 0, eps = [Newton decrement] = 9.7962663893214215e-06, KKT residual^2 = 8.0692927828980542e-37 iter: 2, feasible, f(x) = 0.0076375511333217922, t = 1 (tmax=1), res_primal = 2.2613228829735983e-31, res_dual = 1.5863169044232207e-15, regularization = 0, eps = [Newton decrement] = 3.2097056002080648e-11, KKT residual^2 = 2.5009958978754199e-42 solve_infeasible_start took 0.0026720000000000003 s. check vertex 482***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.01762240139566178, r_dual = ||g+A^T nue||^2 = 0.00033244783030785636) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0056104355997118873, t = 1 (tmax=1), res_primal = 3.5112353177475698e-31, res_dual = 8.9164133287336516e-06, regularization = 0, KKT residual^2 = 1.5317930600914498e-33 iter: 1, feasible, f(x) = 0.0056083170184644338, t = 1 (tmax=1), res_primal = 4.9792702249995879e-31, res_dual = 1.8866365563256935e-11, regularization = 0, eps = [Newton decrement] = 4.2333438132000092e-06, KKT residual^2 = 4.6707950713856189e-37 iter: 2, feasible, f(x) = 0.0056083170122336948, t = 1 (tmax=1), res_primal = 4.1889527609346836e-31, res_dual = 5.8168040211331936e-16, regularization = 0, eps = [Newton decrement] = 1.2403077141702889e-11, KKT residual^2 = 2.0218348085860745e-42 solve_infeasible_start took 0.0032260000000000001 s. check vertex 483***** optimize via Newton (infeasible start version) with 126 unknowns and 101 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.010744308102786416, r_dual = ||g+A^T nue||^2 = 0.00010201240764750801) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0060554274113224851, t = 1 (tmax=1), res_primal = 4.607671811785537e-31, res_dual = 1.0016743431823611e-05, regularization = 0, KKT residual^2 = 1.2249142509269063e-33 iter: 1, feasible, f(x) = 0.0060524563801943798, t = 1 (tmax=1), res_primal = 5.888935759829246e-31, res_dual = 2.1403297295600551e-11, regularization = 0, eps = [Newton decrement] = 5.936311543929519e-06, KKT residual^2 = 7.4905834654538854e-37 iter: 2, feasible, f(x) = 0.0060524563716605672, t = 1 (tmax=1), res_primal = 4.6870731150247356e-31, res_dual = 5.636636782101674e-16, regularization = 0, eps = [Newton decrement] = 1.7007722397298872e-11, KKT residual^2 = 1.9946747038923854e-42 solve_infeasible_start took 0.0040490000000000005 s. check vertex 484***** optimize via Newton (infeasible start version) with 54 unknowns and 41 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.024030848990853493, r_dual = ||g+A^T nue||^2 = 0.0018283617961849187) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.011765151687340552, t = 1 (tmax=1), res_primal = 9.8922283215879006e-32, res_dual = 4.1150745679116562e-05, regularization = 0, KKT residual^2 = 1.6356636352604671e-33 iter: 1, feasible, f(x) = 0.01175373280801059, t = 1 (tmax=1), res_primal = 1.0588365019715869e-31, res_dual = 1.817258831213875e-10, regularization = 0, eps = [Newton decrement] = 2.2806197769519292e-05, KKT residual^2 = 1.2897012320950084e-36 iter: 2, feasible, f(x) = 0.011753732750321662, t = 1 (tmax=1), res_primal = 1.8886408224833784e-31, res_dual = 5.6648434589023365e-15, regularization = 0, eps = [Newton decrement] = 1.1512113400997348e-10, KKT residual^2 = 7.7923130814607908e-42 solve_infeasible_start took 0.0022629999999999998 s. check vertex 485***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.019883325413834668, r_dual = ||g+A^T nue||^2 = 0.00033296597388426474) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0057653504199001544, t = 1 (tmax=1), res_primal = 4.0842919851848874e-31, res_dual = 1.9996353608859912e-05, regularization = 0, KKT residual^2 = 1.606794352268341e-33 iter: 1, feasible, f(x) = 0.0057610095228945984, t = 1 (tmax=1), res_primal = 3.2693437178238244e-31, res_dual = 3.0495383962630535e-11, regularization = 0, eps = [Newton decrement] = 8.6776147939966837e-06, KKT residual^2 = 1.5107297395354942e-36 iter: 2, feasible, f(x) = 0.0057610095119961981, t = 1 (tmax=1), res_primal = 3.6612632260947869e-31, res_dual = 6.3241095264717707e-16, regularization = 0, eps = [Newton decrement] = 2.1711174827136605e-11, KKT residual^2 = 3.1979218418135211e-42 solve_infeasible_start took 0.0034879999999999998 s. check vertex 486***** optimize via Newton (infeasible start version) with 72 unknowns and 56 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.014357346676951035, r_dual = ||g+A^T nue||^2 = 0.00081502317913475933) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0085477417984807444, t = 1 (tmax=1), res_primal = 2.0372549389133666e-31, res_dual = 2.0029300706135757e-05, regularization = 0, KKT residual^2 = 2.0892953864826619e-33 iter: 1, feasible, f(x) = 0.0085404612282912046, t = 1 (tmax=1), res_primal = 2.1740819712146864e-31, res_dual = 8.7203801468522734e-11, regularization = 0, eps = [Newton decrement] = 1.4542620380588905e-05, KKT residual^2 = 9.9370074041450343e-37 iter: 2, feasible, f(x) = 0.0085404611993108396, t = 1 (tmax=1), res_primal = 2.1180101063158843e-31, res_dual = 1.4535083008122991e-15, regularization = 0, eps = [Newton decrement] = 5.7848608706586452e-11, KKT residual^2 = 7.0536931593448709e-42 solve_infeasible_start took 0.002529 s. check vertex 487***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.012838345219575149, r_dual = ||g+A^T nue||^2 = 0.00018923381281617181) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059247556541516689, t = 1 (tmax=1), res_primal = 2.3436287798814874e-31, res_dual = 9.9112852415057426e-06, regularization = 0, KKT residual^2 = 7.6174675165570634e-34 iter: 1, feasible, f(x) = 0.0059207126491686874, t = 1 (tmax=1), res_primal = 1.3411713006807097e-31, res_dual = 3.9215846292441473e-11, regularization = 0, eps = [Newton decrement] = 8.0774514246763068e-06, KKT residual^2 = 2.486534676863597e-37 iter: 2, feasible, f(x) = 0.0059207126364578238, t = 1 (tmax=1), res_primal = 3.2367414367657161e-31, res_dual = 7.3014011502572411e-16, regularization = 0, eps = [Newton decrement] = 2.5361593761716181e-11, KKT residual^2 = 2.8545415563250169e-42 solve_infeasible_start took 0.0037690000000000002 s. check vertex 488***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.012773826259141571, r_dual = ||g+A^T nue||^2 = 0.00019171591821160307) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059387194943925428, t = 1 (tmax=1), res_primal = 1.7146920936710409e-31, res_dual = 9.134126899229256e-06, regularization = 0, KKT residual^2 = 7.8545925671300428e-34 iter: 1, feasible, f(x) = 0.0059351320885651804, t = 1 (tmax=1), res_primal = 3.0405123627335753e-31, res_dual = 4.1025754599320579e-11, regularization = 0, eps = [Newton decrement] = 7.1669450552431599e-06, KKT residual^2 = 4.1578772390591696e-37 iter: 2, feasible, f(x) = 0.0059351320756770038, t = 1 (tmax=1), res_primal = 1.989930290794666e-31, res_dual = 9.2895852542953563e-16, regularization = 0, eps = [Newton decrement] = 2.5700222500358513e-11, KKT residual^2 = 3.1868273726988507e-42 solve_infeasible_start took 0.0032569999999999999 s. check vertex 489***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.013403126891991093, r_dual = ||g+A^T nue||^2 = 0.00021503192469448626) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059656207540856564, t = 1 (tmax=1), res_primal = 2.0937829471996626e-31, res_dual = 9.1391449833016044e-06, regularization = 0, KKT residual^2 = 9.1237093114513446e-34 iter: 1, feasible, f(x) = 0.0059618981564281302, t = 1 (tmax=1), res_primal = 2.832204758788694e-31, res_dual = 4.3384212037039104e-11, regularization = 0, eps = [Newton decrement] = 7.4371365977617139e-06, KKT residual^2 = 5.5333752791139388e-37 iter: 2, feasible, f(x) = 0.0059618981429271078, t = 1 (tmax=1), res_primal = 3.2656749485127724e-31, res_dual = 1.1100368591221248e-15, regularization = 0, eps = [Newton decrement] = 2.6918638452288709e-11, KKT residual^2 = 3.3227181976744273e-42 solve_infeasible_start took 0.0032040000000000003 s. check vertex 490***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.01157747446240685, r_dual = ||g+A^T nue||^2 = 0.00019876282134413691) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059156392224752469, t = 1 (tmax=1), res_primal = 2.6188773168941869e-31, res_dual = 9.9175953519837952e-06, regularization = 0, KKT residual^2 = 1.0179122476395997e-33 iter: 1, feasible, f(x) = 0.0059117881483646603, t = 1 (tmax=1), res_primal = 3.7137651585163801e-31, res_dual = 3.6955673599280751e-11, regularization = 0, eps = [Newton decrement] = 7.6944195162038864e-06, KKT residual^2 = 3.818423598762776e-37 iter: 2, feasible, f(x) = 0.0059117881372280981, t = 1 (tmax=1), res_primal = 3.0979338010859912e-31, res_dual = 7.1596995807346193e-16, regularization = 0, eps = [Newton decrement] = 2.222011657923063e-11, KKT residual^2 = 1.4041427714014933e-42 solve_infeasible_start took 0.0033570000000000002 s. check vertex 491***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.017501860805540333, r_dual = ||g+A^T nue||^2 = 0.00018326811309271905) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0061465090970680564, t = 1 (tmax=1), res_primal = 4.2671234343316209e-31, res_dual = 1.004303413443552e-05, regularization = 0, KKT residual^2 = 1.4676308915513864e-33 iter: 1, feasible, f(x) = 0.0061432983193809342, t = 1 (tmax=1), res_primal = 2.6755318708202183e-31, res_dual = 4.4614498969287883e-11, regularization = 0, eps = [Newton decrement] = 6.4130013338197067e-06, KKT residual^2 = 5.7435650108793383e-37 iter: 2, feasible, f(x) = 0.0061432982985872749, t = 1 (tmax=1), res_primal = 3.0370624128892357e-31, res_dual = 1.8044350832901664e-15, regularization = 0, eps = [Newton decrement] = 4.1368519002687988e-11, KKT residual^2 = 4.5841850198664374e-42 solve_infeasible_start took 0.0033790000000000001 s. check vertex 492***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.013933280761721201, r_dual = ||g+A^T nue||^2 = 0.00016133917763125959) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0069118431127773439, t = 1 (tmax=1), res_primal = 5.5190477708078078e-31, res_dual = 1.3219520780296176e-05, regularization = 0, KKT residual^2 = 1.2239649220194927e-33 iter: 1, feasible, f(x) = 0.0069081394849466859, t = 1 (tmax=1), res_primal = 3.1778779618960574e-31, res_dual = 6.9062274980899514e-11, regularization = 0, eps = [Newton decrement] = 7.3982568391058442e-06, KKT residual^2 = 1.0701026147066696e-36 iter: 2, feasible, f(x) = 0.0069081394705894977, t = 1 (tmax=1), res_primal = 2.966847892772308e-31, res_dual = 1.7557589935098161e-15, regularization = 0, eps = [Newton decrement] = 2.862853980039366e-11, KKT residual^2 = 8.7901099618531911e-42 solve_infeasible_start took 0.0037200000000000002 s. check vertex 493***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.012689249641177177, r_dual = ||g+A^T nue||^2 = 0.00022110810194913191) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0084033375479892255, t = 1 (tmax=1), res_primal = 2.371029997723587e-31, res_dual = 2.2457817548451252e-05, regularization = 0, KKT residual^2 = 2.2384078578107014e-33 iter: 1, feasible, f(x) = 0.0083985099060180264, t = 1 (tmax=1), res_primal = 1.930209564718215e-31, res_dual = 1.0774963999602271e-10, regularization = 0, eps = [Newton decrement] = 9.6423021699350868e-06, KKT residual^2 = 1.0051053424575414e-36 iter: 2, feasible, f(x) = 0.0083985098759266838, t = 1 (tmax=1), res_primal = 2.0653031661689819e-31, res_dual = 6.7020186243996487e-15, regularization = 0, eps = [Newton decrement] = 5.9865573822436027e-11, KKT residual^2 = 9.0968189488187881e-42 solve_infeasible_start took 0.003192 s. check vertex 494***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.024304036265181773, r_dual = ||g+A^T nue||^2 = 0.00034127010705164431) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.005733596092378921, t = 1 (tmax=1), res_primal = 2.8425318157296981e-31, res_dual = 1.6900455360848977e-05, regularization = 0, KKT residual^2 = 2.018713686352333e-33 iter: 1, feasible, f(x) = 0.0057294475508158126, t = 1 (tmax=1), res_primal = 3.9120039051941008e-31, res_dual = 2.6551367835225482e-11, regularization = 0, eps = [Newton decrement] = 8.2954793133765708e-06, KKT residual^2 = 9.1455279737635585e-37 iter: 2, feasible, f(x) = 0.005729447540267568, t = 1 (tmax=1), res_primal = 4.2277040418332495e-31, res_dual = 6.419412305734087e-16, regularization = 0, eps = [Newton decrement] = 2.1011633088050241e-11, KKT residual^2 = 2.9515704248867874e-42 solve_infeasible_start took 0.0033490000000000004 s. check vertex 495***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.016080312532761404, r_dual = ||g+A^T nue||^2 = 0.00052738573241217345) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0074018505529477091, t = 1 (tmax=1), res_primal = 3.995637557171486e-31, res_dual = 1.3510992617626575e-05, regularization = 0, KKT residual^2 = 1.577491595406734e-33 iter: 1, feasible, f(x) = 0.0073978544143642605, t = 1 (tmax=1), res_primal = 3.8667113415461758e-31, res_dual = 4.5914994771562016e-11, regularization = 0, eps = [Newton decrement] = 7.9840386378209193e-06, KKT residual^2 = 9.6488171137211516e-37 iter: 2, feasible, f(x) = 0.0073978543998543412, t = 1 (tmax=1), res_primal = 3.4225183658748158e-31, res_dual = 2.1204106036721341e-15, regularization = 0, eps = [Newton decrement] = 2.889819439692505e-11, KKT residual^2 = 3.4266295126413344e-42 solve_infeasible_start took 0.0036630000000000005 s. check vertex 496***** optimize via Newton (infeasible start version) with 126 unknowns and 101 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.014900141479564472, r_dual = ||g+A^T nue||^2 = 0.00018501893277419763) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0058473367033741851, t = 1 (tmax=1), res_primal = 3.4011330566433701e-31, res_dual = 6.9851472297229303e-06, regularization = 0, KKT residual^2 = 1.243309152358847e-33 iter: 1, feasible, f(x) = 0.0058445496591904922, t = 1 (tmax=1), res_primal = 3.8189940970438759e-31, res_dual = 1.5709359369336979e-11, regularization = 0, eps = [Newton decrement] = 5.5689940621060742e-06, KKT residual^2 = 4.2433562953717688e-37 iter: 2, feasible, f(x) = 0.0058445496529395558, t = 1 (tmax=1), res_primal = 3.0566365463015404e-31, res_dual = 2.2322424566967741e-16, regularization = 0, eps = [Newton decrement] = 1.2474945569096347e-11, KKT residual^2 = 1.511025983521754e-42 solve_infeasible_start took 0.004176 s. check vertex 497***** optimize via Newton (infeasible start version) with 72 unknowns and 56 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.022097352702602685, r_dual = ||g+A^T nue||^2 = 0.00069541466832797596) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0085466906036290105, t = 1 (tmax=1), res_primal = 2.1086000713980366e-31, res_dual = 2.2702636600963798e-05, regularization = 0, KKT residual^2 = 1.1345008977192482e-33 iter: 1, feasible, f(x) = 0.0085406636692102588, t = 1 (tmax=1), res_primal = 1.4119097821873577e-31, res_dual = 1.7977612797624933e-10, regularization = 0, eps = [Newton decrement] = 1.2032663756603842e-05, KKT residual^2 = 1.1453923219787103e-36 iter: 2, feasible, f(x) = 0.0085406636158928927, t = 1 (tmax=1), res_primal = 1.9449146631387422e-31, res_dual = 7.2140897257408868e-15, regularization = 0, eps = [Newton decrement] = 1.0609444286142032e-10, KKT residual^2 = 1.5912411904902175e-41 solve_infeasible_start took 0.0028410000000000002 s. check vertex 498***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.012614285664613799, r_dual = ||g+A^T nue||^2 = 0.00023244801407806633) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0055747125100757315, t = 1 (tmax=1), res_primal = 3.5667898756757011e-31, res_dual = 6.6432423542323118e-06, regularization = 0, KKT residual^2 = 1.1940632652022315e-33 iter: 1, feasible, f(x) = 0.0055723409824311784, t = 1 (tmax=1), res_primal = 3.3986485430457893e-31, res_dual = 1.7063863248398678e-11, regularization = 0, eps = [Newton decrement] = 4.7383448449356966e-06, KKT residual^2 = 7.1097293611778697e-37 iter: 2, feasible, f(x) = 0.0055723409750876021, t = 1 (tmax=1), res_primal = 4.0849324106213595e-31, res_dual = 5.178563522992609e-16, regularization = 0, eps = [Newton decrement] = 1.4627948891675216e-11, KKT residual^2 = 2.6280623838171555e-42 solve_infeasible_start took 0.0032190000000000001 s. check vertex 499***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.014143095723752289, r_dual = ||g+A^T nue||^2 = 0.00022781306274885954) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059088730074774217, t = 1 (tmax=1), res_primal = 2.8877785500642636e-31, res_dual = 8.1827906403026556e-06, regularization = 0, KKT residual^2 = 1.027630235073089e-33 iter: 1, feasible, f(x) = 0.0059061908595692252, t = 1 (tmax=1), res_primal = 3.3409021737468994e-31, res_dual = 2.2056016777164113e-11, regularization = 0, eps = [Newton decrement] = 5.3593022185926061e-06, KKT residual^2 = 4.1399080534131409e-37 iter: 2, feasible, f(x) = 0.0059061908532996987, t = 1 (tmax=1), res_primal = 2.8203544824895137e-31, res_dual = 3.7248790009839546e-16, regularization = 0, eps = [Newton decrement] = 1.2508166833378294e-11, KKT residual^2 = 1.467195156086634e-42 solve_infeasible_start took 0.0032440000000000004 s. check vertex 500***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.017334511330478496, r_dual = ||g+A^T nue||^2 = 0.0002819736034835834) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0062178801092916784, t = 1 (tmax=1), res_primal = 3.2653237711594338e-31, res_dual = 1.1509527963913322e-05, regularization = 0, KKT residual^2 = 1.9808456652706219e-33 iter: 1, feasible, f(x) = 0.0062148898022943745, t = 1 (tmax=1), res_primal = 2.4288220268806005e-31, res_dual = 3.7427791484436346e-11, regularization = 0, eps = [Newton decrement] = 5.9740898109711184e-06, KKT residual^2 = 8.2263018392231198e-37 iter: 2, feasible, f(x) = 0.0062148897922845951, t = 1 (tmax=1), res_primal = 2.439715609421602e-31, res_dual = 7.1635621708265803e-16, regularization = 0, eps = [Newton decrement] = 1.9955420026080941e-11, KKT residual^2 = 2.7829946874274998e-42 solve_infeasible_start took 0.0031680000000000002 s. check vertex 501***** optimize via Newton (infeasible start version) with 126 unknowns and 101 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.013836322253339957, r_dual = ||g+A^T nue||^2 = 0.00019945163212188623) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059156439423173716, t = 1 (tmax=1), res_primal = 5.400527000065195e-31, res_dual = 7.5777552123058969e-06, regularization = 0, KKT residual^2 = 1.3829026491548582e-33 iter: 1, feasible, f(x) = 0.0059120903225046342, t = 1 (tmax=1), res_primal = 3.1424016557883444e-31, res_dual = 1.902859782784878e-11, regularization = 0, eps = [Newton decrement] = 7.1006653201435264e-06, KKT residual^2 = 3.7743737795773132e-37 iter: 2, feasible, f(x) = 0.0059120903137301409, t = 1 (tmax=1), res_primal = 5.4445619069905029e-31, res_dual = 3.482470631027329e-16, regularization = 0, eps = [Newton decrement] = 1.7506081669930611e-11, KKT residual^2 = 1.9384701002359081e-42 solve_infeasible_start took 0.0040350000000000004 s. check vertex 502***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.012810472213817649, r_dual = ||g+A^T nue||^2 = 0.000185098570008217) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059691873293280457, t = 1 (tmax=1), res_primal = 2.6465082626817444e-31, res_dual = 9.43102156049065e-06, regularization = 0, KKT residual^2 = 1.0493435573400902e-33 iter: 1, feasible, f(x) = 0.0059655377035688732, t = 1 (tmax=1), res_primal = 2.5233882660774915e-31, res_dual = 4.4803441922762973e-11, regularization = 0, eps = [Newton decrement] = 7.2912226111720948e-06, KKT residual^2 = 5.2411648875144088e-37 iter: 2, feasible, f(x) = 0.0059655376901803095, t = 1 (tmax=1), res_primal = 2.1801791809743252e-31, res_dual = 1.056014631816239e-15, regularization = 0, eps = [Newton decrement] = 2.6697970050662512e-11, KKT residual^2 = 4.0661496649259138e-42 solve_infeasible_start took 0.0030000000000000001 s. check vertex 503***** optimize via Newton (infeasible start version) with 72 unknowns and 56 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.017685083994331097, r_dual = ||g+A^T nue||^2 = 0.00069459327394401978) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.007530859591676607, t = 1 (tmax=1), res_primal = 1.1532166497096431e-31, res_dual = 1.2624017407197365e-05, regularization = 0, KKT residual^2 = 1.4907682869989758e-33 iter: 1, feasible, f(x) = 0.0075262267319259248, t = 1 (tmax=1), res_primal = 1.5523120389405064e-31, res_dual = 5.055081510613656e-11, regularization = 0, eps = [Newton decrement] = 9.2560936153217891e-06, KKT residual^2 = 4.7361040190310602e-37 iter: 2, feasible, f(x) = 0.0075262267183757526, t = 1 (tmax=1), res_primal = 1.6943716983468382e-31, res_dual = 9.106529539684399e-16, regularization = 0, eps = [Newton decrement] = 2.7038764009467472e-11, KKT residual^2 = 4.0075295049942321e-42 solve_infeasible_start took 0.0031590000000000003 s. check vertex 504***** optimize via Newton (infeasible start version) with 72 unknowns and 56 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.021857524406835523, r_dual = ||g+A^T nue||^2 = 0.00078231784216209867) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0081637825496383327, t = 1 (tmax=1), res_primal = 1.0595109022114333e-31, res_dual = 1.6678905588203268e-05, regularization = 0, KKT residual^2 = 1.3929148858408274e-33 iter: 1, feasible, f(x) = 0.0081584486419257821, t = 1 (tmax=1), res_primal = 1.7656867167962108e-31, res_dual = 6.8330479226158298e-11, regularization = 0, eps = [Newton decrement] = 1.0656227422492494e-05, KKT residual^2 = 7.0863208762577173e-37 iter: 2, feasible, f(x) = 0.0081584486257167705, t = 1 (tmax=1), res_primal = 2.0709979534793914e-31, res_dual = 1.1105100869689447e-15, regularization = 0, eps = [Newton decrement] = 3.2358201709314064e-11, KKT residual^2 = 4.0063336883679525e-42 solve_infeasible_start took 0.0029140000000000004 s. check vertex 505***** optimize via Newton (infeasible start version) with 108 unknowns and 86 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.016698878847301077, r_dual = ||g+A^T nue||^2 = 0.00043253894065785364) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0069342901866841829, t = 1 (tmax=1), res_primal = 4.2784269866043719e-31, res_dual = 1.1019731946256328e-05, regularization = 0, KKT residual^2 = 1.3234798534651249e-33 iter: 1, feasible, f(x) = 0.0069299146155218164, t = 1 (tmax=1), res_primal = 3.113688627100689e-31, res_dual = 4.3971756600233443e-11, regularization = 0, eps = [Newton decrement] = 8.7401928921351812e-06, KKT residual^2 = 6.4289290755914275e-37 iter: 2, feasible, f(x) = 0.0069299145949993698, t = 1 (tmax=1), res_primal = 3.1454528982771318e-31, res_dual = 1.4718601682403596e-15, regularization = 0, eps = [Newton decrement] = 4.0892502554733669e-11, KKT residual^2 = 4.2157284896215057e-42 solve_infeasible_start took 0.0036190000000000003 s. check vertex 506***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.013887296449213478, r_dual = ||g+A^T nue||^2 = 0.00021626169479008802) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0080586388245399553, t = 1 (tmax=1), res_primal = 1.9709336454852557e-31, res_dual = 2.1309800409089192e-05, regularization = 0, KKT residual^2 = 1.4776534708643911e-33 iter: 1, feasible, f(x) = 0.0080541005959639447, t = 1 (tmax=1), res_primal = 2.6288296719684132e-31, res_dual = 9.4323826147578536e-11, regularization = 0, eps = [Newton decrement] = 9.0647320783129112e-06, KKT residual^2 = 6.7807764693573016e-37 iter: 2, feasible, f(x) = 0.0080541005691752779, t = 1 (tmax=1), res_primal = 2.5100612736616046e-31, res_dual = 6.1009590458345452e-15, regularization = 0, eps = [Newton decrement] = 5.3293955927267521e-11, KKT residual^2 = 4.6663995890913572e-42 solve_infeasible_start took 0.0029729999999999999 s. check vertex 507***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.011443262692734329, r_dual = ||g+A^T nue||^2 = 0.00021946364980798803) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059734618824911186, t = 1 (tmax=1), res_primal = 2.5467887049591976e-31, res_dual = 8.9083101577832897e-06, regularization = 0, KKT residual^2 = 1.1407968648566272e-33 iter: 1, feasible, f(x) = 0.005970137026526579, t = 1 (tmax=1), res_primal = 3.9071772700430483e-31, res_dual = 3.1785140996062207e-11, regularization = 0, eps = [Newton decrement] = 6.6428822355578944e-06, KKT residual^2 = 5.7883043032258631e-37 iter: 2, feasible, f(x) = 0.0059701370165585656, t = 1 (tmax=1), res_primal = 3.1130219643623179e-31, res_dual = 5.8898638292735553e-16, regularization = 0, eps = [Newton decrement] = 1.9885769664444668e-11, KKT residual^2 = 2.3565922711712894e-42 solve_infeasible_start took 0.002862 s. check vertex 508***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.012624329377437715, r_dual = ||g+A^T nue||^2 = 0.00019496657901840454) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059920173317731876, t = 1 (tmax=1), res_primal = 3.7407387055260424e-31, res_dual = 9.1520091622101122e-06, regularization = 0, KKT residual^2 = 8.9092260956317499e-34 iter: 1, feasible, f(x) = 0.005988249014147122, t = 1 (tmax=1), res_primal = 3.4878977153914403e-31, res_dual = 3.3999979119223176e-11, regularization = 0, eps = [Newton decrement] = 7.5288531423312844e-06, KKT residual^2 = 5.5579312278180196e-37 iter: 2, feasible, f(x) = 0.0059882490025802444, t = 1 (tmax=1), res_primal = 2.5730942642948673e-31, res_dual = 6.6967292813041864e-16, regularization = 0, eps = [Newton decrement] = 2.3074885531884643e-11, KKT residual^2 = 2.2337898432743675e-42 solve_infeasible_start took 0.0034220000000000001 s. check vertex 509***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.012991239091698439, r_dual = ||g+A^T nue||^2 = 0.00024902158844941949) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0060265652661996572, t = 1 (tmax=1), res_primal = 2.1429674369988881e-31, res_dual = 8.7628990235826892e-06, regularization = 0, KKT residual^2 = 1.0153387600981281e-33 iter: 1, feasible, f(x) = 0.0060233832763828543, t = 1 (tmax=1), res_primal = 1.6116032359371852e-31, res_dual = 2.8212689705622883e-11, regularization = 0, eps = [Newton decrement] = 6.3577700362567675e-06, KKT residual^2 = 4.0525310540214647e-37 iter: 2, feasible, f(x) = 0.0060233832675378636, t = 1 (tmax=1), res_primal = 2.7394300125322162e-31, res_dual = 5.4677768661761155e-16, regularization = 0, eps = [Newton decrement] = 1.7644439578019673e-11, KKT residual^2 = 1.9919864859789948e-42 solve_infeasible_start took 0.0032760000000000003 s. check vertex 510***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.018349298242590861, r_dual = ||g+A^T nue||^2 = 0.00030791847608762659) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0060880992809281033, t = 1 (tmax=1), res_primal = 3.107659954260839e-31, res_dual = 9.5404448691059954e-06, regularization = 0, KKT residual^2 = 1.2076886235058153e-33 iter: 1, feasible, f(x) = 0.0060854909144774554, t = 1 (tmax=1), res_primal = 3.7843496508807542e-31, res_dual = 1.4953906885566016e-11, regularization = 0, eps = [Newton decrement] = 5.2123077130867205e-06, KKT residual^2 = 4.638852267907971e-37 iter: 2, feasible, f(x) = 0.0060854909092581313, t = 1 (tmax=1), res_primal = 3.1103421591615705e-31, res_dual = 2.1450568068418328e-16, regularization = 0, eps = [Newton decrement] = 1.0415089719997421e-11, KKT residual^2 = 7.3496367463030989e-43 solve_infeasible_start took 0.003101 s. check vertex 511***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.010449095126844244, r_dual = ||g+A^T nue||^2 = 0.00017900236330272055) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0060330982847590928, t = 1 (tmax=1), res_primal = 2.0582320636550367e-31, res_dual = 9.7884457421141498e-06, regularization = 0, KKT residual^2 = 7.4763806109648357e-34 iter: 1, feasible, f(x) = 0.0060292418123098334, t = 1 (tmax=1), res_primal = 2.3513759919494639e-31, res_dual = 4.2556509678412006e-11, regularization = 0, eps = [Newton decrement] = 7.7043992931120321e-06, KKT residual^2 = 4.5468763496637287e-37 iter: 2, feasible, f(x) = 0.0060292417988838561, t = 1 (tmax=1), res_primal = 2.3395757601536913e-31, res_dual = 9.0038062238769573e-16, regularization = 0, eps = [Newton decrement] = 2.6776696334486904e-11, KKT residual^2 = 2.0742877852521297e-42 solve_infeasible_start took 0.0029950000000000003 s. check vertex 512***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.011465654415904931, r_dual = ||g+A^T nue||^2 = 0.00019194168736357705) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0060230613327438226, t = 1 (tmax=1), res_primal = 2.3205650403857212e-31, res_dual = 9.939508519440931e-06, regularization = 0, KKT residual^2 = 9.7510980946154754e-34 iter: 1, feasible, f(x) = 0.0060190640962958586, t = 1 (tmax=1), res_primal = 2.0731404099414142e-31, res_dual = 4.3242910441725773e-11, regularization = 0, eps = [Newton decrement] = 7.9857271757606437e-06, KKT residual^2 = 4.2797433113352713e-37 iter: 2, feasible, f(x) = 0.0060190640825361127, t = 1 (tmax=1), res_primal = 3.0241213087913771e-31, res_dual = 9.1559767848742839e-16, regularization = 0, eps = [Newton decrement] = 2.7446108381757807e-11, KKT residual^2 = 1.9827500758260071e-42 solve_infeasible_start took 0.003248 s. check vertex 513***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.013572028612816646, r_dual = ||g+A^T nue||^2 = 0.00022209917745731782) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0066440535330703696, t = 1 (tmax=1), res_primal = 2.5324333887130744e-31, res_dual = 9.6537136352622905e-06, regularization = 0, KKT residual^2 = 1.1305317513107553e-33 iter: 1, feasible, f(x) = 0.0066397223607551729, t = 1 (tmax=1), res_primal = 2.3230956164738517e-31, res_dual = 3.630110334772301e-11, regularization = 0, eps = [Newton decrement] = 8.6529340793496665e-06, KKT residual^2 = 5.1707939040212952e-37 iter: 2, feasible, f(x) = 0.0066397223460410975, t = 1 (tmax=1), res_primal = 2.3055917946307575e-31, res_dual = 8.6459715692713799e-16, regularization = 0, eps = [Newton decrement] = 2.9344887722211867e-11, KKT residual^2 = 3.2544258275812011e-42 solve_infeasible_start took 0.0035769999999999999 s. check vertex 514***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.013129781263897538, r_dual = ||g+A^T nue||^2 = 0.0002112095463606433) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0059585695191328725, t = 1 (tmax=1), res_primal = 3.2843485757338217e-31, res_dual = 9.3197027767245204e-06, regularization = 0, KKT residual^2 = 1.1118909409105917e-33 iter: 1, feasible, f(x) = 0.0059549801763241327, t = 1 (tmax=1), res_primal = 3.7017651645893022e-31, res_dual = 3.3563930232221223e-11, regularization = 0, eps = [Newton decrement] = 7.171283980438892e-06, KKT residual^2 = 4.4281892858193606e-37 iter: 2, feasible, f(x) = 0.0059549801657710743, t = 1 (tmax=1), res_primal = 2.455261456344088e-31, res_dual = 5.6853026399813446e-16, regularization = 0, eps = [Newton decrement] = 2.1057493644901254e-11, KKT residual^2 = 1.9471854910067012e-42 solve_infeasible_start took 0.0030060000000000004 s. check vertex 515***** optimize via Newton (infeasible start version) with 90 unknowns and 71 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.015763061900107001, r_dual = ||g+A^T nue||^2 = 0.0002371561617346022) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.0063065020483244446, t = 1 (tmax=1), res_primal = 3.0665636129693613e-31, res_dual = 1.0260036184739112e-05, regularization = 0, KKT residual^2 = 1.5332025303483785e-33 iter: 1, feasible, f(x) = 0.0063031794313196596, t = 1 (tmax=1), res_primal = 2.7699276357444031e-31, res_dual = 3.0056215351147201e-11, regularization = 0, eps = [Newton decrement] = 6.6385674303130118e-06, KKT residual^2 = 3.597399802769075e-37 iter: 2, feasible, f(x) = 0.0063031794218280915, t = 1 (tmax=1), res_primal = 2.9737246748571211e-31, res_dual = 5.7020004560044371e-16, regularization = 0, eps = [Newton decrement] = 1.8933498359395497e-11, KKT residual^2 = 2.7487741537098089e-42 solve_infeasible_start took 0.002954 s. check vertex 1781***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.92339275346251815, r_dual = ||g+A^T nue||^2 = 0.0024351857867144881) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.52841738609957423, t = 1 (tmax=1), res_primal = 3.9576365298041001e-31, res_dual = 0.10080061465685114, regularization = 0, KKT residual^2 = 4.605551301649727e-32 iter: 1, feasible, f(x) = 0.50018601407134144, t = 1 (tmax=1), res_primal = 3.82277211164227e-31, res_dual = 0.00061336186511246732, regularization = 0, eps = [Newton decrement] = 0.053332239247815418, KKT residual^2 = 3.5839627390741399e-33 iter: 2, feasible, f(x) = 0.49993675107388413, t = 1 (tmax=1), res_primal = 5.1347395286277313e-31, res_dual = 1.9721968597035066e-07, regularization = 0, eps = [Newton decrement] = 0.00049321612513553712, KKT residual^2 = 2.3573795011522285e-35 iter: 3, feasible, f(x) = 0.49993664296227835, t = 1 (tmax=1), res_primal = 4.2280771941352259e-31, res_dual = 5.8136902383586471e-10, regularization = 0, eps = [Newton decrement] = 2.0712687427464312e-07, KKT residual^2 = 2.6254868877589144e-38 solve_infeasible_start took 0.017197 s. check vertex 2281***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.70598669845503914, r_dual = ||g+A^T nue||^2 = 0.00094808903957250624) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.46828946578186326, t = 1 (tmax=1), res_primal = 6.7012633044489305e-31, res_dual = 0.08248557567526274, regularization = 0, KKT residual^2 = 3.96853329389936e-32 iter: 1, feasible, f(x) = 0.43457631967244459, t = 1 (tmax=1), res_primal = 8.1037465422530055e-31, res_dual = 0.0011269352934516206, regularization = 0, eps = [Newton decrement] = 0.062490002900205496, KKT residual^2 = 3.9296389029974819e-33 iter: 2, feasible, f(x) = 0.43397352896842101, t = 1 (tmax=1), res_primal = 6.0594601612810704e-31, res_dual = 1.2630020961833399e-06, regularization = 0, eps = [Newton decrement] = 0.0011743300787605895, KKT residual^2 = 9.3411214901954235e-35 iter: 3, feasible, f(x) = 0.43397248165977376, t = 1 (tmax=1), res_primal = 7.7470675134463984e-31, res_dual = 3.7362097412610389e-09, regularization = 0, eps = [Newton decrement] = 2.0186433091285592e-06, KKT residual^2 = 1.4349994031564534e-37 iter: 4, feasible, f(x) = 0.4339724792741998, t = 1 (tmax=1), res_primal = 9.2850227091120453e-31, res_dual = 1.6929612452409035e-11, regularization = 0, eps = [Newton decrement] = 4.4740814341920842e-09, KKT residual^2 = 7.2081034591651518e-40 solve_infeasible_start took 0.019751999999999999 s. check vertex 2284***** optimize via Newton (infeasible start version) with 216 unknowns and 178 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.77513741847466577, r_dual = ||g+A^T nue||^2 = 0.00047310982583340252) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.33371827919762198, t = 1 (tmax=1), res_primal = 8.503005421597094e-31, res_dual = 0.023870727352075332, regularization = 0, KKT residual^2 = 4.027287577316925e-32 iter: 1, feasible, f(x) = 0.31951571250499816, t = 1 (tmax=1), res_primal = 1.0607945688568947e-30, res_dual = 7.6382104599185922e-05, regularization = 0, eps = [Newton decrement] = 0.027253705890118642, KKT residual^2 = 1.673306380502789e-33 iter: 2, feasible, f(x) = 0.31945165127959846, t = 1 (tmax=1), res_primal = 1.1528498773353606e-30, res_dual = 2.1835535805710553e-08, regularization = 0, eps = [Newton decrement] = 0.00012688282620729798, KKT residual^2 = 1.0640469605622992e-35 iter: 3, feasible, f(x) = 0.319451625003772, t = 1 (tmax=1), res_primal = 8.2640669176872001e-31, res_dual = 8.3020641886007155e-11, regularization = 0, eps = [Newton decrement] = 5.0072505190109192e-08, KKT residual^2 = 5.8530277675761258e-39 solve_infeasible_start took 0.065576000000000009 s. check vertex 2289***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.99441015887375706, r_dual = ||g+A^T nue||^2 = 0.0022041387928215805) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.68625658757529451, t = 1 (tmax=1), res_primal = 7.070319582134527e-31, res_dual = 0.31838525390974126, regularization = 0, KKT residual^2 = 8.6470807115893094e-32 iter: 1, feasible, f(x) = 0.63241123545729061, t = 1 (tmax=1), res_primal = 6.141497706396892e-31, res_dual = 0.0042561473627204301, regularization = 0, eps = [Newton decrement] = 0.09919985402859631, KKT residual^2 = 3.3212379808093847e-32 iter: 2, feasible, f(x) = 0.63134331938252275, t = 1 (tmax=1), res_primal = 4.7088422215681319e-31, res_dual = 5.9033792024646482e-06, regularization = 0, eps = [Newton decrement] = 0.002068805683508622, KKT residual^2 = 8.8714774619964934e-35 iter: 3, feasible, f(x) = 0.63134061130304364, t = 1 (tmax=1), res_primal = 5.0589597730389375e-31, res_dual = 2.2081158814076763e-08, regularization = 0, eps = [Newton decrement] = 5.12610267729934e-06, KKT residual^2 = 9.1115592637168476e-37 iter: 4, feasible, f(x) = 0.6313405980720237, t = 1 (tmax=1), res_primal = 4.0212470939712875e-31, res_dual = 2.0496876764116523e-10, regularization = 0, eps = [Newton decrement] = 2.4091954243091753e-08, KKT residual^2 = 4.3848808869903122e-39 solve_infeasible_start took 0.072805999999999996 s. check vertex 2292***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.5734961550148856, r_dual = ||g+A^T nue||^2 = 0.0014600744262921346) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.50784760375672666, t = 1 (tmax=1), res_primal = 6.1192360440352799e-31, res_dual = 0.086459053676153391, regularization = 0, KKT residual^2 = 6.7284808103565013e-32 iter: 1, feasible, f(x) = 0.47777974140078305, t = 1 (tmax=1), res_primal = 7.299741132611839e-31, res_dual = 0.0006073942413231761, regularization = 0, eps = [Newton decrement] = 0.056483713580238799, KKT residual^2 = 5.4012029781482415e-33 iter: 2, feasible, f(x) = 0.47743979857681257, t = 1 (tmax=1), res_primal = 8.7176798952270316e-31, res_dual = 4.7638030966431851e-07, regularization = 0, eps = [Newton decrement] = 0.00066674331641692502, KKT residual^2 = 3.6047297346784629e-35 iter: 3, feasible, f(x) = 0.47743934134036004, t = 1 (tmax=1), res_primal = 6.0278260246860994e-31, res_dual = 2.8060511989058264e-09, regularization = 0, eps = [Newton decrement] = 8.5704698929825544e-07, KKT residual^2 = 9.1326686133900354e-38 solve_infeasible_start took 0.049666000000000002 s. check vertex 2293***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.93165597894402974, r_dual = ||g+A^T nue||^2 = 0.0012634559747904052) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.42613658843683838, t = 1 (tmax=1), res_primal = 7.777703416790123e-31, res_dual = 0.045443455830815979, regularization = 0, KKT residual^2 = 5.1573686671078128e-32 iter: 1, feasible, f(x) = 0.40561754980650155, t = 1 (tmax=1), res_primal = 8.5460277102648923e-31, res_dual = 0.0001850851387731157, regularization = 0, eps = [Newton decrement] = 0.039163072062321072, KKT residual^2 = 3.1964644466880304e-33 iter: 2, feasible, f(x) = 0.40550218841467456, t = 1 (tmax=1), res_primal = 9.9599210699752687e-31, res_dual = 3.341324192834419e-08, regularization = 0, eps = [Newton decrement] = 0.00022908491309351909, KKT residual^2 = 1.4757434937252274e-35 iter: 3, feasible, f(x) = 0.40550215441124077, t = 1 (tmax=1), res_primal = 6.8234649891725749e-31, res_dual = 1.889564539368432e-10, regularization = 0, eps = [Newton decrement] = 6.3680443247288322e-08, KKT residual^2 = 6.1837570140413679e-39 solve_infeasible_start took 0.021059000000000001 s. check vertex 2298***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.67091849426051908, r_dual = ||g+A^T nue||^2 = 0.0033126744046849559) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.50085662985337831, t = 1 (tmax=1), res_primal = 3.6449562354868273e-31, res_dual = 0.10378049324804867, regularization = 0, KKT residual^2 = 7.2017926347072785e-32 iter: 1, feasible, f(x) = 0.47668743872460262, t = 1 (tmax=1), res_primal = 3.1698587928062962e-31, res_dual = 0.00051654286140577444, regularization = 0, eps = [Newton decrement] = 0.045828645535412639, KKT residual^2 = 5.8828806706619232e-33 iter: 2, feasible, f(x) = 0.4765008018903093, t = 1 (tmax=1), res_primal = 2.2439005155854099e-31, res_dual = 2.281006806538022e-07, regularization = 0, eps = [Newton decrement] = 0.00036772744348603119, KKT residual^2 = 1.968564199198945e-35 iter: 3, feasible, f(x) = 0.47650067742186425, t = 1 (tmax=1), res_primal = 1.6509248711597701e-31, res_dual = 4.455168820909215e-10, regularization = 0, eps = [Newton decrement] = 2.4048640755309541e-07, KKT residual^2 = 4.558492881379646e-38 solve_infeasible_start took 0.0078760000000000011 s. check vertex 2303***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.86122794705390449, r_dual = ||g+A^T nue||^2 = 0.0010964378190316249) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.45621190341195783, t = 1 (tmax=1), res_primal = 5.2339316672885163e-31, res_dual = 0.10121115384961363, regularization = 0, KKT residual^2 = 4.2271452100861742e-32 iter: 1, feasible, f(x) = 0.42931137165986621, t = 1 (tmax=1), res_primal = 9.0596376111293665e-31, res_dual = 0.0012830646210687533, regularization = 0, eps = [Newton decrement] = 0.049990808405492596, KKT residual^2 = 3.6152309485655893e-33 iter: 2, feasible, f(x) = 0.42884398545187036, t = 1 (tmax=1), res_primal = 8.6579692897750459e-31, res_dual = 1.7755622210148765e-06, regularization = 0, eps = [Newton decrement] = 0.00090384100000147219, KKT residual^2 = 5.8345385247255798e-35 iter: 3, feasible, f(x) = 0.42884289254112962, t = 1 (tmax=1), res_primal = 6.759701468250688e-31, res_dual = 3.0117758280052001e-09, regularization = 0, eps = [Newton decrement] = 2.113015507983066e-06, KKT residual^2 = 2.0674808852025542e-37 iter: 4, feasible, f(x) = 0.42884289069338344, t = 1 (tmax=1), res_primal = 7.4896552286465382e-31, res_dual = 9.9758956661935402e-12, regularization = 0, eps = [Newton decrement] = 3.4973188949528406e-09, KKT residual^2 = 4.8716250846938691e-40 solve_infeasible_start took 0.017696999999999997 s. check vertex 2310***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.1258894217278028, r_dual = ||g+A^T nue||^2 = 0.0008200297501282629) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.51880412121781905, t = 1 (tmax=1), res_primal = 9.2399579281846811e-31, res_dual = 0.094718642042066106, regularization = 0, KKT residual^2 = 5.247871111557267e-32 iter: 1, feasible, f(x) = 0.48380619688932114, t = 1 (tmax=1), res_primal = 8.4391802339707811e-31, res_dual = 0.001165622389094191, regularization = 0, eps = [Newton decrement] = 0.065236568871526207, KKT residual^2 = 6.0113411434929803e-33 iter: 2, feasible, f(x) = 0.48328855420985473, t = 1 (tmax=1), res_primal = 1.1407487821234936e-30, res_dual = 1.3789856017720902e-06, regularization = 0, eps = [Newton decrement] = 0.0010087528120116434, KKT residual^2 = 1.2200272260708767e-34 iter: 3, feasible, f(x) = 0.48328752638259392, t = 1 (tmax=1), res_primal = 9.1102586529124777e-31, res_dual = 7.883257850275306e-09, regularization = 0, eps = [Newton decrement] = 1.9285580585579831e-06, KKT residual^2 = 1.7593645142156918e-37 iter: 4, feasible, f(x) = 0.48328751955936322, t = 1 (tmax=1), res_primal = 7.4844060056103376e-31, res_dual = 8.8587780179689516e-11, regularization = 0, eps = [Newton decrement] = 1.2290598672250896e-08, KKT residual^2 = 2.6358977119974206e-39 solve_infeasible_start took 0.018985999999999999 s. check vertex 2314***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.88674253644375234, r_dual = ||g+A^T nue||^2 = 0.00096187555259135999) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.53507174426233894, t = 1 (tmax=1), res_primal = 7.2449020607917664e-31, res_dual = 0.11038214331954858, regularization = 0, KKT residual^2 = 7.1969654643938591e-32 iter: 1, feasible, f(x) = 0.49803596412241879, t = 1 (tmax=1), res_primal = 7.7488181181251818e-31, res_dual = 0.001714320584030531, regularization = 0, eps = [Newton decrement] = 0.068530609087994188, KKT residual^2 = 6.5119705954673343e-33 iter: 2, feasible, f(x) = 0.4972982318861825, t = 1 (tmax=1), res_primal = 4.0793001651327773e-31, res_dual = 3.0372500379437421e-06, regularization = 0, eps = [Newton decrement] = 0.001427757338396466, KKT residual^2 = 1.3433049229475882e-34 iter: 3, feasible, f(x) = 0.4972960696323423, t = 1 (tmax=1), res_primal = 7.0440802881870902e-31, res_dual = 1.2732484163606702e-08, regularization = 0, eps = [Newton decrement] = 4.0904467708056053e-06, KKT residual^2 = 2.8622240590809821e-37 iter: 4, feasible, f(x) = 0.49729605748544503, t = 1 (tmax=1), res_primal = 6.3697841131651173e-31, res_dual = 1.4521814732236471e-10, regularization = 0, eps = [Newton decrement] = 2.1956868882370265e-08, KKT residual^2 = 4.0359787226338518e-39 solve_infeasible_start took 0.019675000000000002 s. check vertex 2315***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.54362784870197667, r_dual = ||g+A^T nue||^2 = 0.0021310766670391132) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.42537154648754533, t = 1 (tmax=1), res_primal = 3.4119817836482042e-31, res_dual = 0.065471825394978297, regularization = 0, KKT residual^2 = 5.4965943514807983e-32 iter: 1, feasible, f(x) = 0.40622824430650872, t = 1 (tmax=1), res_primal = 4.3332878058783998e-31, res_dual = 0.00022894493781627732, regularization = 0, eps = [Newton decrement] = 0.03662382495136509, KKT residual^2 = 2.5315650339759094e-33 iter: 2, feasible, f(x) = 0.40613212799130144, t = 1 (tmax=1), res_primal = 3.5050565377376168e-31, res_dual = 8.7667807208529598e-09, regularization = 0, eps = [Newton decrement] = 0.00019148859584462423, KKT residual^2 = 1.6878887402732024e-35 iter: 3, feasible, f(x) = 0.40613212379961605, t = 1 (tmax=1), res_primal = 4.6552471159659229e-31, res_dual = 2.8903954190607088e-12, regularization = 0, eps = [Newton decrement] = 8.2937845431312656e-09, KKT residual^2 = 5.367962370769858e-40 solve_infeasible_start took 0.009613 s. check vertex 2317***** optimize via Newton (infeasible start version) with 72 unknowns and 58 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.83057286980468981, r_dual = ||g+A^T nue||^2 = 0.0065172254651561633) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.88966212308857628, t = 1 (tmax=1), res_primal = 1.9228246899198814e-31, res_dual = 0.51829370899797289, regularization = 0, KKT residual^2 = 7.7106285547803724e-32 iter: 1, feasible, f(x) = 0.81577822935413435, t = 1 (tmax=1), res_primal = 2.0067855821728957e-31, res_dual = 0.0076524834756083356, regularization = 0, eps = [Newton decrement] = 0.13575741011929446, KKT residual^2 = 1.6669144312016775e-32 iter: 2, feasible, f(x) = 0.8141801614773867, t = 1 (tmax=1), res_primal = 2.4562367701659597e-31, res_dual = 7.4240243155851412e-06, regularization = 0, eps = [Newton decrement] = 0.0031313445510857095, KKT residual^2 = 2.1800918281631879e-34 iter: 3, feasible, f(x) = 0.81417829657236607, t = 1 (tmax=1), res_primal = 2.0447895211339152e-31, res_dual = 1.8481046204558361e-08, regularization = 0, eps = [Newton decrement] = 3.6177002650318634e-06, KKT residual^2 = 2.1402351339928727e-37 iter: 4, feasible, f(x) = 0.81417829094475702, t = 1 (tmax=1), res_primal = 2.9263013614967221e-31, res_dual = 1.6035747487732299e-10, regularization = 0, eps = [Newton decrement] = 1.0297601007654437e-08, KKT residual^2 = 2.0608687146470885e-39 solve_infeasible_start took 0.0089220000000000011 s. check vertex 2320***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.97930420357006942, r_dual = ||g+A^T nue||^2 = 0.0056081716639321188) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.69186449088008151, t = 1 (tmax=1), res_primal = 3.9927522321341987e-31, res_dual = 0.33400852630006805, regularization = 0, KKT residual^2 = 9.2180228877136781e-32 iter: 1, feasible, f(x) = 0.64334731952487889, t = 1 (tmax=1), res_primal = 3.5971589589211861e-31, res_dual = 0.0048115967990089532, regularization = 0, eps = [Newton decrement] = 0.089351455399258872, KKT residual^2 = 1.3281639370156189e-32 iter: 2, feasible, f(x) = 0.64227805935624693, t = 1 (tmax=1), res_primal = 6.212579210390703e-31, res_dual = 7.9019912478944228e-06, regularization = 0, eps = [Newton decrement] = 0.0020716716785754621, KKT residual^2 = 3.1480733382924687e-34 iter: 3, feasible, f(x) = 0.64227550581873194, t = 1 (tmax=1), res_primal = 3.8627352574370905e-31, res_dual = 1.1427751264178406e-08, regularization = 0, eps = [Newton decrement] = 4.9648241220012065e-06, KKT residual^2 = 4.9260070287660676e-37 iter: 4, feasible, f(x) = 0.64227550246502596, t = 1 (tmax=1), res_primal = 4.2332468650490468e-31, res_dual = 3.2825513507467137e-11, regularization = 0, eps = [Newton decrement] = 6.3792220595453202e-09, KKT residual^2 = 1.26500122201614e-39 solve_infeasible_start took 0.0099280000000000011 s. check vertex 2321***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.83214340946418297, r_dual = ||g+A^T nue||^2 = 0.0012405263857748565) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.39958251776025827, t = 1 (tmax=1), res_primal = 6.9775886320099028e-31, res_dual = 0.051552425202638412, regularization = 0, KKT residual^2 = 6.5624692732023397e-32 iter: 1, feasible, f(x) = 0.38066516442028842, t = 1 (tmax=1), res_primal = 7.6855677957203135e-31, res_dual = 0.00021885110618041428, regularization = 0, eps = [Newton decrement] = 0.036058531399264585, KKT residual^2 = 2.5435515833904724e-33 iter: 2, feasible, f(x) = 0.38054962186728186, t = 1 (tmax=1), res_primal = 7.1865133772800067e-31, res_dual = 4.4589931622113809e-08, regularization = 0, eps = [Newton decrement] = 0.00022887221439782423, KKT residual^2 = 1.6467663569663717e-35 iter: 3, feasible, f(x) = 0.38054957956479529, t = 1 (tmax=1), res_primal = 5.9694708832905398e-31, res_dual = 1.151678344946136e-10, regularization = 0, eps = [Newton decrement] = 8.1103412718863595e-08, KKT residual^2 = 8.9658266718903199e-39 solve_infeasible_start took 0.017132000000000001 s. check vertex 2325***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.0850067207624683, r_dual = ||g+A^T nue||^2 = 0.0016759734933965115) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.46308032782609709, t = 1 (tmax=1), res_primal = 6.8275649294320364e-31, res_dual = 0.062635343105341329, regularization = 0, KKT residual^2 = 6.6269168168500762e-32 iter: 1, feasible, f(x) = 0.44235587022365469, t = 1 (tmax=1), res_primal = 6.4313445078551965e-31, res_dual = 0.00028991317556472388, regularization = 0, eps = [Newton decrement] = 0.039346995487691785, KKT residual^2 = 4.1134645755535288e-33 iter: 2, feasible, f(x) = 0.44219832357072764, t = 1 (tmax=1), res_primal = 6.4194444769802339e-31, res_dual = 2.4036447716166e-07, regularization = 0, eps = [Newton decrement] = 0.00030981688494922011, KKT residual^2 = 1.7816057296839126e-35 iter: 3, feasible, f(x) = 0.44219813579877654, t = 1 (tmax=1), res_primal = 7.8294543934224641e-31, res_dual = 1.9051734979838563e-09, regularization = 0, eps = [Newton decrement] = 3.4853393543012089e-07, KKT residual^2 = 4.641392725000271e-38 solve_infeasible_start took 0.013195999999999999 s. check vertex 2326***** optimize via Newton (infeasible start version) with 72 unknowns and 58 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.1524098539591217, r_dual = ||g+A^T nue||^2 = 0.013001660170129981) using linear solver Umfpack iter: 0, infeasible, f(x) = 1.4517492743338467, t = 0.99775487333307356 (tmax=0.99775487333307356), res_primal = 5.8088299079313021e-06, res_dual = 4.7014520480003466, regularization = 0, KKT residual^2 = 2.1254990845794588e-31 iter: 1, infeasible, f(x) = 1.2635057125293361, t = 1 (tmax=1), res_primal = 2.2843548605541279e-31, res_dual = 0.10640033627773934, regularization = 0, KKT residual^2 = 9.8884329755062173e-32 iter: 2, feasible, f(x) = 1.2538805918182554, t = 1 (tmax=1), res_primal = 2.3608684467673037e-31, res_dual = 0.00049357108841096707, regularization = 0, eps = [Newton decrement] = 0.018382303677039455, KKT residual^2 = 5.8620948582305267e-33 iter: 3, feasible, f(x) = 1.2538237706299866, t = 1 (tmax=1), res_primal = 2.2910268451367016e-31, res_dual = 1.0070167644021516e-06, regularization = 0, eps = [Newton decrement] = 0.00011063796985012536, KKT residual^2 = 1.6731810354894078e-35 iter: 4, feasible, f(x) = 1.2538236640977387, t = 1 (tmax=1), res_primal = 2.1240280722237105e-31, res_dual = 6.9373126188007151e-09, regularization = 0, eps = [Newton decrement] = 1.96812697334474e-07, KKT residual^2 = 1.5711949487501705e-37 solve_infeasible_start took 0.0085270000000000016 s. check vertex 2328***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.84402595207623232, r_dual = ||g+A^T nue||^2 = 0.0047757139548866047) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.95413289246644639, t = 1 (tmax=1), res_primal = 5.7131685108180304e-31, res_dual = 1.2089311969285268, regularization = 0, KKT residual^2 = 1.2161499800801112e-31 iter: 1, feasible, f(x) = 0.84337992474795265, t = 1 (tmax=1), res_primal = 2.5853978732300862e-31, res_dual = 0.037376702602587027, regularization = 0, eps = [Newton decrement] = 0.19793332436147168, KKT residual^2 = 3.565850860169049e-32 iter: 2, feasible, f(x) = 0.83842368868269834, t = 1 (tmax=1), res_primal = 4.3702777433016725e-31, res_dual = 0.00016457920107248335, regularization = 0, eps = [Newton decrement] = 0.0094778580490225157, KKT residual^2 = 1.2524564010063059e-33 iter: 3, feasible, f(x) = 0.83839835968035903, t = 1 (tmax=1), res_primal = 2.8366526735618244e-31, res_dual = 1.1999471237875364e-07, regularization = 0, eps = [Newton decrement] = 4.9734735587338371e-05, KKT residual^2 = 5.6219747896284079e-36 iter: 4, feasible, f(x) = 0.83839833142386344, t = 1 (tmax=1), res_primal = 2.8606954846450515e-31, res_dual = 5.5418948193322044e-10, regularization = 0, eps = [Newton decrement] = 5.2997556677531966e-08, KKT residual^2 = 1.9502346400160841e-38 solve_infeasible_start took 0.010537000000000001 s. check vertex 2329***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.68512600625361197, r_dual = ||g+A^T nue||^2 = 0.0017296861545549594) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.54622479380470068, t = 1 (tmax=1), res_primal = 5.3904447883715353e-31, res_dual = 0.12131217063456241, regularization = 0, KKT residual^2 = 9.0663061872998701e-32 iter: 1, feasible, f(x) = 0.5083098730117046, t = 1 (tmax=1), res_primal = 8.6674527085501909e-31, res_dual = 0.0014919938123918353, regularization = 0, eps = [Newton decrement] = 0.070478801762028642, KKT residual^2 = 5.6006262453029024e-33 iter: 2, feasible, f(x) = 0.50771919034175261, t = 1 (tmax=1), res_primal = 6.9227689082249592e-31, res_dual = 6.4968012160177116e-07, regularization = 0, eps = [Newton decrement] = 0.0011655465554835523, KKT residual^2 = 1.1068582257824608e-34 iter: 3, feasible, f(x) = 0.50771890798620456, t = 1 (tmax=1), res_primal = 5.5475605422111587e-31, res_dual = 5.7842690223004686e-10, regularization = 0, eps = [Newton decrement] = 5.5689065366718455e-07, KKT residual^2 = 3.7195585261113123e-38 solve_infeasible_start took 0.011833999999999999 s. check vertex 2334***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.77991832784348791, r_dual = ||g+A^T nue||^2 = 0.0031320696724069499) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.77218795342157032, t = 1 (tmax=1), res_primal = 3.1475668623985304e-31, res_dual = 0.41706780648478597, regularization = 0, KKT residual^2 = 1.1821548376251809e-31 iter: 1, feasible, f(x) = 0.70102915416408962, t = 1 (tmax=1), res_primal = 2.4594095220195567e-31, res_dual = 0.0085144395264837042, regularization = 0, eps = [Newton decrement] = 0.12975737290519529, KKT residual^2 = 1.463292743505639e-32 iter: 2, feasible, f(x) = 0.69910281995868984, t = 1 (tmax=1), res_primal = 2.9005707146952267e-31, res_dual = 1.3851099592669452e-05, regularization = 0, eps = [Newton decrement] = 0.0037378886028359183, KKT residual^2 = 3.3030073485713526e-34 iter: 3, feasible, f(x) = 0.69909837597279645, t = 1 (tmax=1), res_primal = 3.5033115668424383e-31, res_dual = 2.4412013950394301e-08, regularization = 0, eps = [Newton decrement] = 8.6239052349537369e-06, KKT residual^2 = 9.8984803049067138e-37 iter: 4, feasible, f(x) = 0.69909836772756218, t = 1 (tmax=1), res_primal = 2.9227660179350058e-31, res_dual = 1.0191128488486525e-10, regularization = 0, eps = [Newton decrement] = 1.5512806571246483e-08, KKT residual^2 = 2.4919046944798319e-39 solve_infeasible_start took 0.009214 s. check vertex 2344***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.99011561966975681, r_dual = ||g+A^T nue||^2 = 0.0016614832227133506) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.73249348206492826, t = 1 (tmax=1), res_primal = 6.5439346681465729e-31, res_dual = 0.46797893993524575, regularization = 0, KKT residual^2 = 7.6760544886092232e-32 iter: 1, feasible, f(x) = 0.64112749904545441, t = 1 (tmax=1), res_primal = 5.3772110049829536e-31, res_dual = 0.019701800590087561, regularization = 0, eps = [Newton decrement] = 0.16180360418775702, KKT residual^2 = 1.3833126861678381e-32 iter: 2, feasible, f(x) = 0.63616929844995529, t = 1 (tmax=1), res_primal = 5.7911168834103482e-31, res_dual = 0.00012220363365657717, regularization = 0, eps = [Newton decrement] = 0.00940876710017036, KKT residual^2 = 1.0124851192024298e-33 iter: 3, feasible, f(x) = 0.63613475877475634, t = 1 (tmax=1), res_primal = 9.4680569786273941e-31, res_dual = 9.1731778802431983e-08, regularization = 0, eps = [Newton decrement] = 6.7840227751978736e-05, KKT residual^2 = 5.4407247130304663e-36 iter: 4, feasible, f(x) = 0.63613471462958737, t = 1 (tmax=1), res_primal = 8.1293926588006649e-31, res_dual = 6.1812260965916744e-10, regularization = 0, eps = [Newton decrement] = 8.1728639365231029e-08, KKT residual^2 = 8.9238771525616448e-39 solve_infeasible_start took 0.016669 s. check vertex 2346***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.83429622069242559, r_dual = ||g+A^T nue||^2 = 0.0024949275934696867) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.6565912616070031, t = 1 (tmax=1), res_primal = 5.6064694088735037e-31, res_dual = 0.33550950375895727, regularization = 0, KKT residual^2 = 1.020236344362898e-31 iter: 1, feasible, f(x) = 0.59565399245588746, t = 1 (tmax=1), res_primal = 5.4385018632239542e-31, res_dual = 0.0055445547733408559, regularization = 0, eps = [Newton decrement] = 0.11110126023695927, KKT residual^2 = 1.3635842936834493e-32 iter: 2, feasible, f(x) = 0.59410216483454115, t = 1 (tmax=1), res_primal = 5.7902592172247987e-31, res_dual = 1.0089703116731429e-05, regularization = 0, eps = [Newton decrement] = 0.0029874039551343653, KKT residual^2 = 2.5681818000344775e-34 iter: 3, feasible, f(x) = 0.59409710752613165, t = 1 (tmax=1), res_primal = 6.8810452283146769e-31, res_dual = 3.5582569209273558e-08, regularization = 0, eps = [Newton decrement] = 9.6421256959906441e-06, KKT residual^2 = 7.3732263416068742e-37 iter: 4, feasible, f(x) = 0.59409709159378177, t = 1 (tmax=1), res_primal = 6.637683645487816e-31, res_dual = 1.4567939857556523e-10, regularization = 0, eps = [Newton decrement] = 2.9867836964843505e-08, KKT residual^2 = 4.4545596301955668e-39 solve_infeasible_start took 0.019559 s. check vertex 2353***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.89025284819777706, r_dual = ||g+A^T nue||^2 = 0.0020339331199504449) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.56827466133533122, t = 1 (tmax=1), res_primal = 8.509362139843416e-31, res_dual = 0.1131620546133535, regularization = 0, KKT residual^2 = 6.6620459170410254e-32 iter: 1, feasible, f(x) = 0.52855218899220047, t = 1 (tmax=1), res_primal = 5.5891020477119718e-31, res_dual = 0.0010857149643917728, regularization = 0, eps = [Newton decrement] = 0.074249591622269878, KKT residual^2 = 5.9119159029531575e-33 iter: 2, feasible, f(x) = 0.52805635278465279, t = 1 (tmax=1), res_primal = 4.3316964642102044e-31, res_dual = 5.2081505039297418e-07, regularization = 0, eps = [Newton decrement] = 0.00097732406164135902, KKT residual^2 = 6.368235523720325e-35 iter: 3, feasible, f(x) = 0.52805599112026247, t = 1 (tmax=1), res_primal = 5.0902181865353676e-31, res_dual = 2.5785442891477839e-09, regularization = 0, eps = [Newton decrement] = 6.8434082866726252e-07, KKT residual^2 = 7.5433507112386913e-38 solve_infeasible_start took 0.013429 s. check vertex 2354***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.60613092447694084, r_dual = ||g+A^T nue||^2 = 0.0065721176218673134) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.68776993539085585, t = 1 (tmax=1), res_primal = 2.9358399511247159e-31, res_dual = 0.30073780363746572, regularization = 0, KKT residual^2 = 7.9236820212185159e-32 iter: 1, feasible, f(x) = 0.63971663270376222, t = 1 (tmax=1), res_primal = 3.8694332669824548e-31, res_dual = 0.00348442573029879, regularization = 0, eps = [Newton decrement] = 0.088797504133999089, KKT residual^2 = 1.2993355782664408e-32 iter: 2, feasible, f(x) = 0.63882451727064693, t = 1 (tmax=1), res_primal = 4.6644102789987326e-31, res_dual = 3.9922533360616064e-06, regularization = 0, eps = [Newton decrement] = 0.0017357292966691945, KKT residual^2 = 1.1516780749435538e-34 iter: 3, feasible, f(x) = 0.63882294240138982, t = 1 (tmax=1), res_primal = 4.1634481241820683e-31, res_dual = 8.3160603886176995e-09, regularization = 0, eps = [Newton decrement] = 3.0414795687621141e-06, KKT residual^2 = 5.153301878206654e-37 iter: 4, feasible, f(x) = 0.63882293991904726, t = 1 (tmax=1), res_primal = 3.3144752867174279e-31, res_dual = 1.6610510287121113e-11, regularization = 0, eps = [Newton decrement] = 4.7548792701728595e-09, KKT residual^2 = 1.1671983123777088e-39 solve_infeasible_start took 0.012810999999999999 s. check vertex 2359***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.7932596705645758, r_dual = ||g+A^T nue||^2 = 0.0064591528594136914) using linear solver Umfpack iter: 0, infeasible, f(x) = 1.0249797306748705, t = 1 (tmax=1), res_primal = 4.6161342866414051e-31, res_dual = 0.58893448633871692, regularization = 0, KKT residual^2 = 7.660282105113853e-32 iter: 1, feasible, f(x) = 0.92309820204857984, t = 1 (tmax=1), res_primal = 2.8588212425814668e-31, res_dual = 0.01051035723685282, regularization = 0, eps = [Newton decrement] = 0.18502188322242666, KKT residual^2 = 3.8176073164415365e-32 iter: 2, feasible, f(x) = 0.92045486645527519, t = 1 (tmax=1), res_primal = 4.1743408470492786e-31, res_dual = 1.9832077740189654e-05, regularization = 0, eps = [Newton decrement] = 0.0051141893211819117, KKT residual^2 = 7.4728460391361734e-34 iter: 3, feasible, f(x) = 0.92044604168446376, t = 1 (tmax=1), res_primal = 4.4564194469868832e-31, res_dual = 2.396185752393589e-07, regularization = 0, eps = [Newton decrement] = 1.6167679940134469e-05, KKT residual^2 = 3.0086730977541065e-36 iter: 4, feasible, f(x) = 0.92044594183238448, t = 1 (tmax=1), res_primal = 4.3597367697148285e-31, res_dual = 3.7402677645231749e-09, regularization = 0, eps = [Newton decrement] = 1.7749048577067912e-07, KKT residual^2 = 4.3159097012715599e-38 solve_infeasible_start took 0.011604000000000001 s. check vertex 2360***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.95087803365945034, r_dual = ||g+A^T nue||^2 = 0.0012828378010697054) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.4612495909685963, t = 1 (tmax=1), res_primal = 6.8072758662338566e-31, res_dual = 0.056645565765306161, regularization = 0, KKT residual^2 = 7.4365715211150921e-32 iter: 1, feasible, f(x) = 0.43761636803152371, t = 1 (tmax=1), res_primal = 7.1508382206911016e-31, res_dual = 0.00034990605310823724, regularization = 0, eps = [Newton decrement] = 0.044744342956377019, KKT residual^2 = 4.0157202381153196e-33 iter: 2, feasible, f(x) = 0.43741263120584273, t = 1 (tmax=1), res_primal = 5.6834718841444818e-31, res_dual = 2.5107535563618239e-07, regularization = 0, eps = [Newton decrement] = 0.00040104964790274432, KKT residual^2 = 2.240484438745429e-35 iter: 3, feasible, f(x) = 0.43741245206788448, t = 1 (tmax=1), res_primal = 8.1199722102668763e-31, res_dual = 1.106647727201007e-09, regularization = 0, eps = [Newton decrement] = 3.4028025915356317e-07, KKT residual^2 = 3.9743762837534417e-38 solve_infeasible_start took 0.017725999999999999 s. check vertex 2361***** optimize via Newton (infeasible start version) with 108 unknowns and 87 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.71549043949322977, r_dual = ||g+A^T nue||^2 = 0.002193147802274639) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.70406301024807594, t = 1 (tmax=1), res_primal = 3.1583304994462051e-31, res_dual = 0.3615718625970053, regularization = 0, KKT residual^2 = 1.252337765921078e-31 iter: 1, feasible, f(x) = 0.64625455759268391, t = 1 (tmax=1), res_primal = 2.5322283363280534e-31, res_dual = 0.0034187956550053712, regularization = 0, eps = [Newton decrement] = 0.10684669413491094, KKT residual^2 = 2.016591147365304e-32 iter: 2, feasible, f(x) = 0.64526873468249502, t = 1 (tmax=1), res_primal = 2.9716915086267381e-31, res_dual = 4.440608339531067e-06, regularization = 0, eps = [Newton decrement] = 0.0019223864423029164, KKT residual^2 = 1.6683965703686658e-34 iter: 3, feasible, f(x) = 0.64526673954555713, t = 1 (tmax=1), res_primal = 3.0853220145613394e-31, res_dual = 3.480662165285119e-08, regularization = 0, eps = [Newton decrement] = 3.7037624117996234e-06, KKT residual^2 = 5.2052812119985688e-37 iter: 4, feasible, f(x) = 0.64526672464779855, t = 1 (tmax=1), res_primal = 4.5035713057503612e-31, res_dual = 3.1916388757858408e-10, regularization = 0, eps = [Newton decrement] = 2.7157063571529499e-08, KKT residual^2 = 2.7592833320146069e-39 solve_infeasible_start took 0.010986000000000001 s. check vertex 2370***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.78404565593639597, r_dual = ||g+A^T nue||^2 = 0.0015495497812487839) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.44595320188629656, t = 1 (tmax=1), res_primal = 7.3513763984257634e-31, res_dual = 0.090262728237375703, regularization = 0, KKT residual^2 = 6.299806364728076e-32 iter: 1, feasible, f(x) = 0.42111992823251015, t = 1 (tmax=1), res_primal = 8.2641368360971176e-31, res_dual = 0.00099804316888473942, regularization = 0, eps = [Newton decrement] = 0.046377114077852284, KKT residual^2 = 4.2677419865765711e-33 iter: 2, feasible, f(x) = 0.42075793695689523, t = 1 (tmax=1), res_primal = 7.4050387788466141e-31, res_dual = 8.9651620765654375e-07, regularization = 0, eps = [Newton decrement] = 0.00070708092961128575, KKT residual^2 = 6.4158803709548382e-35 iter: 3, feasible, f(x) = 0.42075746832126915, t = 1 (tmax=1), res_primal = 8.602338672022399e-31, res_dual = 1.4719419148060335e-09, regularization = 0, eps = [Newton decrement] = 9.0689486519662373e-07, KKT residual^2 = 1.308300431448042e-37 solve_infeasible_start took 0.019611 s. check vertex 2371***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.81485378529743135, r_dual = ||g+A^T nue||^2 = 0.001372076951741578) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.43431372314992378, t = 1 (tmax=1), res_primal = 5.1619657335509782e-31, res_dual = 0.069847700556189565, regularization = 0, KKT residual^2 = 5.4908266020205851e-32 iter: 1, feasible, f(x) = 0.41186522429354444, t = 1 (tmax=1), res_primal = 5.4004652671829619e-31, res_dual = 0.00043339786620089646, regularization = 0, eps = [Newton decrement] = 0.042477341979286341, KKT residual^2 = 2.9214418189349359e-33 iter: 2, feasible, f(x) = 0.41167978185794019, t = 1 (tmax=1), res_primal = 4.3481995637864486e-31, res_dual = 1.6901838048645106e-07, regularization = 0, eps = [Newton decrement] = 0.00036561440216685705, KKT residual^2 = 4.5098102411895773e-35 iter: 3, feasible, f(x) = 0.41167967559684232, t = 1 (tmax=1), res_primal = 4.6333550195643369e-31, res_dual = 3.2146683701807936e-10, regularization = 0, eps = [Newton decrement] = 2.0519311169026963e-07, KKT residual^2 = 2.6448024410136271e-38 solve_infeasible_start took 0.010805 s. check vertex 2377***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.98825537909873773, r_dual = ||g+A^T nue||^2 = 0.00093276650270043924) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.39961161090718655, t = 1 (tmax=1), res_primal = 6.1977292132511121e-31, res_dual = 0.050853482184001139, regularization = 0, KKT residual^2 = 3.7934805231409523e-32 iter: 1, feasible, f(x) = 0.38073594033673774, t = 1 (tmax=1), res_primal = 6.969303614560155e-31, res_dual = 0.00033881642877454785, regularization = 0, eps = [Newton decrement] = 0.035798896872200149, KKT residual^2 = 3.691041120136791e-33 iter: 2, feasible, f(x) = 0.38058113436547236, t = 1 (tmax=1), res_primal = 8.9448379135149747e-31, res_dual = 1.7014144923295294e-07, regularization = 0, eps = [Newton decrement] = 0.00030370662805063862, KKT residual^2 = 2.8773024509719891e-35 iter: 3, feasible, f(x) = 0.38058098616092495, t = 1 (tmax=1), res_primal = 7.8103432538919476e-31, res_dual = 3.4736149248384336e-10, regularization = 0, eps = [Newton decrement] = 2.856187476375843e-07, KKT residual^2 = 2.3467417286190701e-38 solve_infeasible_start took 0.017963999999999997 s. check vertex 2381***** optimize via Newton (infeasible start version) with 90 unknowns and 72 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.84817384535528184, r_dual = ||g+A^T nue||^2 = 0.0045412061045668308) using linear solver Umfpack iter: 0, infeasible, f(x) = 1.1181710479978928, t = 1 (tmax=1), res_primal = 4.6619079135798771e-31, res_dual = 1.4341948299442602, regularization = 0, KKT residual^2 = 1.1933791613911811e-31 iter: 1, feasible, f(x) = 0.97417274692957379, t = 1 (tmax=1), res_primal = 3.301551497519007e-31, res_dual = 0.032077262515038278, regularization = 0, eps = [Newton decrement] = 0.25851340941935524, KKT residual^2 = 3.541056853145573e-32 iter: 2, feasible, f(x) = 0.96910879183630161, t = 1 (tmax=1), res_primal = 2.5772844597672858e-31, res_dual = 5.7189116933407893e-05, regularization = 0, eps = [Newton decrement] = 0.0098246822473649874, KKT residual^2 = 1.0980598932369698e-33 iter: 3, feasible, f(x) = 0.96909601805641299, t = 1 (tmax=1), res_primal = 4.8066059895953586e-31, res_dual = 2.66479791283935e-07, regularization = 0, eps = [Newton decrement] = 2.4423186545799038e-05, KKT residual^2 = 2.8350783411459209e-36 iter: 4, feasible, f(x) = 0.96909593684133244, t = 1 (tmax=1), res_primal = 4.8006380074106539e-31, res_dual = 5.6908560777432572e-09, regularization = 0, eps = [Newton decrement] = 1.4188895636090208e-07, KKT residual^2 = 3.4821222197791842e-38 solve_infeasible_start took 0.018864000000000002 s. check vertex 2394***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.80836078044366588, r_dual = ||g+A^T nue||^2 = 0.0039511736642996965) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.45414227604743296, t = 1 (tmax=1), res_primal = 3.4841846629288999e-31, res_dual = 0.092380291041637128, regularization = 0, KKT residual^2 = 5.5124870921059335e-32 iter: 1, feasible, f(x) = 0.43321524593598171, t = 1 (tmax=1), res_primal = 4.949721844313077e-31, res_dual = 0.00062556976150195034, regularization = 0, eps = [Newton decrement] = 0.039348552161410887, KKT residual^2 = 3.992794186764427e-33 iter: 2, feasible, f(x) = 0.432977643002873, t = 1 (tmax=1), res_primal = 4.5941505025248004e-31, res_dual = 5.6729315386627986e-07, regularization = 0, eps = [Newton decrement] = 0.00046302873765096048, KKT residual^2 = 4.3028951436809971e-35 iter: 3, feasible, f(x) = 0.43297728287875292, t = 1 (tmax=1), res_primal = 3.39637624433204e-31, res_dual = 1.4432974143874938e-09, regularization = 0, eps = [Newton decrement] = 6.9146029113031805e-07, KKT residual^2 = 7.6899569893399123e-38 solve_infeasible_start took 0.012259000000000001 s. check vertex 2395***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.48083497612460346, r_dual = ||g+A^T nue||^2 = 0.0036102205337507163) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.47191009375928594, t = 1 (tmax=1), res_primal = 4.3000407501953356e-31, res_dual = 0.10714601030821827, regularization = 0, KKT residual^2 = 5.2523002482838974e-29 iter: 1, feasible, f(x) = 0.44228308161411933, t = 1 (tmax=1), res_primal = 3.1635873635639985e-31, res_dual = 0.0011570388165014565, regularization = 0, eps = [Newton decrement] = 0.0550420401219806, KKT residual^2 = 6.7840165592301652e-32 iter: 2, feasible, f(x) = 0.44177868985127866, t = 1 (tmax=1), res_primal = 4.1362774528839641e-31, res_dual = 1.5674996672917709e-06, regularization = 0, eps = [Newton decrement] = 0.00097852932746016067, KKT residual^2 = 2.3275805055085541e-33 iter: 3, feasible, f(x) = 0.4417776540046075, t = 1 (tmax=1), res_primal = 3.2467809967233961e-31, res_dual = 3.3277074592846151e-09, regularization = 0, eps = [Newton decrement] = 2.0062823519797848e-06, KKT residual^2 = 6.0894710289641872e-35 iter: 4, feasible, f(x) = 0.44177765258934543, t = 1 (tmax=1), res_primal = 4.5239243137358746e-31, res_dual = 5.8234886290772038e-12, regularization = 0, eps = [Newton decrement] = 2.7184493107052181e-09, KKT residual^2 = 2.9930894080304999e-37 solve_infeasible_start took 0.01082 s. check vertex 2399***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.68272069123274015, r_dual = ||g+A^T nue||^2 = 0.0015298556456174836) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.460880417979742, t = 1 (tmax=1), res_primal = 7.8539731702268292e-31, res_dual = 0.10577163170896069, regularization = 0, KKT residual^2 = 8.087378260985726e-32 iter: 1, feasible, f(x) = 0.43247796513580294, t = 1 (tmax=1), res_primal = 7.3003845658347639e-31, res_dual = 0.00097069474762595629, regularization = 0, eps = [Newton decrement] = 0.053085126840820916, KKT residual^2 = 4.4804819236950793e-33 iter: 2, feasible, f(x) = 0.4321215409200696, t = 1 (tmax=1), res_primal = 7.2381520146399964e-31, res_dual = 7.5690483389473685e-07, regularization = 0, eps = [Newton decrement] = 0.00069637639851909247, KKT residual^2 = 6.7594852875111022e-35 iter: 3, feasible, f(x) = 0.43212110256108521, t = 1 (tmax=1), res_primal = 8.228623521205424e-31, res_dual = 1.702207463690027e-09, regularization = 0, eps = [Newton decrement] = 8.4268496557688744e-07, KKT residual^2 = 1.9570989046928026e-37 solve_infeasible_start took 0.021394000000000003 s. check vertex 2401***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.99147102136512366, r_dual = ||g+A^T nue||^2 = 0.0010522962163750282) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.45349057017464856, t = 1 (tmax=1), res_primal = 7.0757967581907938e-31, res_dual = 0.052693384105628703, regularization = 0, KKT residual^2 = 7.1647049224491754e-32 iter: 1, feasible, f(x) = 0.43177045816814119, t = 1 (tmax=1), res_primal = 5.6221191487708599e-31, res_dual = 0.00027494394131559821, regularization = 0, eps = [Newton decrement] = 0.041273788094982, KKT residual^2 = 3.8723242800982902e-33 iter: 2, feasible, f(x) = 0.43161883658596667, t = 1 (tmax=1), res_primal = 6.0968822358910343e-31, res_dual = 1.0912321665901642e-07, regularization = 0, eps = [Newton decrement] = 0.0002992828063418216, KKT residual^2 = 1.8687337507774865e-35 iter: 3, feasible, f(x) = 0.43161874146664936, t = 1 (tmax=1), res_primal = 5.6616006582565826e-31, res_dual = 4.5720015092755777e-10, regularization = 0, eps = [Newton decrement] = 1.8080664883010569e-07, KKT residual^2 = 2.5496128911498693e-38 solve_infeasible_start took 0.01414 s. check vertex 2408***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.0189397887746472, r_dual = ||g+A^T nue||^2 = 0.0014283359862716355) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.6350512226597409, t = 1 (tmax=1), res_primal = 6.7583905882003783e-31, res_dual = 0.19218468827781954, regularization = 0, KKT residual^2 = 7.005373618182258e-32 iter: 1, feasible, f(x) = 0.57950979759768118, t = 1 (tmax=1), res_primal = 7.7761250756911174e-31, res_dual = 0.002654854033550696, regularization = 0, eps = [Newton decrement] = 0.1026403638972352, KKT residual^2 = 1.7149808544339957e-32 iter: 2, feasible, f(x) = 0.57852711375545662, t = 1 (tmax=1), res_primal = 9.0032549962077926e-31, res_dual = 2.0235464324109368e-06, regularization = 0, eps = [Newton decrement] = 0.0019273890420464812, KKT residual^2 = 1.7593869082309782e-34 iter: 3, feasible, f(x) = 0.57852607140917012, t = 1 (tmax=1), res_primal = 6.89138137246536e-31, res_dual = 6.0666471827413768e-09, regularization = 0, eps = [Newton decrement] = 2.0033835112416942e-06, KKT residual^2 = 2.7724661618323146e-37 iter: 4, feasible, f(x) = 0.57852606759144343, t = 1 (tmax=1), res_primal = 8.853323158540812e-31, res_dual = 6.1957422812662039e-11, regularization = 0, eps = [Newton decrement] = 6.918979578750443e-09, KKT residual^2 = 1.2171850196313606e-39 solve_infeasible_start took 0.02478 s. check vertex 2413***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.1211682704784649, r_dual = ||g+A^T nue||^2 = 0.0042428208196898416) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.64045781376721234, t = 1 (tmax=1), res_primal = 4.2101544298147619e-31, res_dual = 0.19860178701349801, regularization = 0, KKT residual^2 = 9.3317413647236811e-32 iter: 1, feasible, f(x) = 0.60163667238024221, t = 1 (tmax=1), res_primal = 5.1803511700072598e-31, res_dual = 0.0017527398338151737, regularization = 0, eps = [Newton decrement] = 0.07233408213046448, KKT residual^2 = 1.0688604501908594e-32 iter: 2, feasible, f(x) = 0.60105562196777373, t = 1 (tmax=1), res_primal = 4.4678085852085451e-31, res_dual = 2.710843940927228e-06, regularization = 0, eps = [Newton decrement] = 0.001127489621405285, KKT residual^2 = 1.1166737270326404e-34 iter: 3, feasible, f(x) = 0.60105412966940519, t = 1 (tmax=1), res_primal = 3.926446374453448e-31, res_dual = 1.8919550134168615e-08, regularization = 0, eps = [Newton decrement] = 2.7907525170263894e-06, KKT residual^2 = 5.5384796763041421e-37 iter: 4, feasible, f(x) = 0.60105412011756898, t = 1 (tmax=1), res_primal = 3.7490311330529008e-31, res_dual = 1.8260898099609199e-10, regularization = 0, eps = [Newton decrement] = 1.7387602816185346e-08, KKT residual^2 = 5.9897786342453391e-39 solve_infeasible_start took 0.010941000000000001 s. check vertex 2415***** optimize via Newton (infeasible start version) with 72 unknowns and 58 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.80314336194700087, r_dual = ||g+A^T nue||^2 = 0.0067555720615797435) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.73518447556235555, t = 1 (tmax=1), res_primal = 3.2049385291741573e-31, res_dual = 0.3073244259933659, regularization = 0, KKT residual^2 = 1.480297906687096e-31 iter: 1, feasible, f(x) = 0.68967394210185917, t = 1 (tmax=1), res_primal = 2.2739571180828357e-31, res_dual = 0.0022482960751222291, regularization = 0, eps = [Newton decrement] = 0.085228587110088572, KKT residual^2 = 1.7866979477815323e-32 iter: 2, feasible, f(x) = 0.68914557934289022, t = 1 (tmax=1), res_primal = 3.9710343506344091e-31, res_dual = 8.6023705631384624e-07, regularization = 0, eps = [Newton decrement] = 0.001043534153187572, KKT residual^2 = 7.3591942877913628e-35 iter: 3, feasible, f(x) = 0.68914530664137574, t = 1 (tmax=1), res_primal = 2.1805529799802854e-31, res_dual = 2.2211835039878417e-09, regularization = 0, eps = [Newton decrement] = 5.2525128025728896e-07, KKT residual^2 = 7.429870592264591e-38 solve_infeasible_start took 0.0068510000000000003 s. check vertex 2417***** optimize via Newton (infeasible start version) with 72 unknowns and 58 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.52196854053880226, r_dual = ||g+A^T nue||^2 = 0.006009676356378754) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.91878093786438919, t = 1 (tmax=1), res_primal = 2.2401450527653664e-31, res_dual = 0.86190766058724932, regularization = 0, KKT residual^2 = 1.2788227281491835e-31 iter: 1, feasible, f(x) = 0.82899213595540222, t = 1 (tmax=1), res_primal = 1.7484696003711717e-31, res_dual = 0.015710154179568364, regularization = 0, eps = [Newton decrement] = 0.16339735671999589, KKT residual^2 = 4.8502478096904889e-32 iter: 2, feasible, f(x) = 0.82655152819806799, t = 1 (tmax=1), res_primal = 2.154546492670419e-31, res_dual = 2.5029905251174145e-05, regularization = 0, eps = [Newton decrement] = 0.0047515993216751314, KKT residual^2 = 6.0075161108664912e-34 iter: 3, feasible, f(x) = 0.82654689505424273, t = 1 (tmax=1), res_primal = 1.3860279451413135e-31, res_dual = 3.0553433157052658e-08, regularization = 0, eps = [Newton decrement] = 9.0684646521611639e-06, KKT residual^2 = 1.3211457877878418e-36 iter: 4, feasible, f(x) = 0.82654688897609407, t = 1 (tmax=1), res_primal = 2.2477561326051254e-31, res_dual = 1.1376310560003955e-10, regularization = 0, eps = [Newton decrement] = 1.1468172843365264e-08, KKT residual^2 = 2.9025120990813899e-39 solve_infeasible_start took 0.0078729999999999998 s. check vertex 2420***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.56837781958096678, r_dual = ||g+A^T nue||^2 = 0.0038989200029264821) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.81931233573548867, t = 1 (tmax=1), res_primal = 4.2627290773876808e-31, res_dual = 0.57943965928897312, regularization = 0, KKT residual^2 = 7.9337729400491187e-32 iter: 1, feasible, f(x) = 0.73893121308890508, t = 1 (tmax=1), res_primal = 3.7789987029567104e-31, res_dual = 0.0096533418149463632, regularization = 0, eps = [Newton decrement] = 0.14643230916136024, KKT residual^2 = 2.1410158315348909e-32 iter: 2, feasible, f(x) = 0.73689289718091366, t = 1 (tmax=1), res_primal = 3.2277874298312959e-31, res_dual = 1.5538930205637102e-05, regularization = 0, eps = [Newton decrement] = 0.0039453738106479293, KKT residual^2 = 3.1919064549201563e-34 iter: 3, feasible, f(x) = 0.7368877066469548, t = 1 (tmax=1), res_primal = 4.6327147293732306e-31, res_dual = 5.0237619707216419e-08, regularization = 0, eps = [Newton decrement] = 9.9177092520391914e-06, KKT residual^2 = 1.382601845691973e-36 iter: 4, feasible, f(x) = 0.73688769013183653, t = 1 (tmax=1), res_primal = 3.3889459272382196e-31, res_dual = 2.2974705789830931e-10, regularization = 0, eps = [Newton decrement] = 3.0786356451308991e-08, KKT residual^2 = 1.0041954386448332e-38 solve_infeasible_start took 0.013673999999999999 s. check vertex 2421***** optimize via Newton (infeasible start version) with 198 unknowns and 163 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.4371613625869459, r_dual = ||g+A^T nue||^2 = 0.0013192972858970804) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.62212225175601465, t = 1 (tmax=1), res_primal = 1.1943636119572805e-30, res_dual = 0.097073401244140364, regularization = 0, KKT residual^2 = 1.0501425404325246e-31 iter: 1, feasible, f(x) = 0.58002705882284777, t = 1 (tmax=1), res_primal = 1.0320479430961403e-30, res_dual = 0.00078993578150526964, regularization = 0, eps = [Newton decrement] = 0.078798289956581419, KKT residual^2 = 6.5985310676292419e-33 iter: 2, feasible, f(x) = 0.5795272780412497, t = 1 (tmax=1), res_primal = 7.589490913723739e-31, res_dual = 8.6964693659463937e-07, regularization = 0, eps = [Newton decrement] = 0.00098023349934195023, KKT residual^2 = 5.5445653381972131e-35 iter: 3, feasible, f(x) = 0.57952646766697025, t = 1 (tmax=1), res_primal = 1.076378673030881e-30, res_dual = 1.0186315823532771e-08, regularization = 0, eps = [Newton decrement] = 1.4796146403165088e-06, KKT residual^2 = 2.8634674038171856e-37 iter: 4, feasible, f(x) = 0.57952645771723199, t = 1 (tmax=1), res_primal = 8.5185777259450341e-31, res_dual = 1.7630700788632834e-10, regularization = 0, eps = [Newton decrement] = 1.7503005122259111e-08, KKT residual^2 = 4.3991395544958624e-39 solve_infeasible_start took 0.024894000000000003 s. check vertex 2424***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.7438582552537415, r_dual = ||g+A^T nue||^2 = 0.0016296072588778319) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.40210998630196026, t = 1 (tmax=1), res_primal = 5.1717848151339224e-31, res_dual = 0.066883145655933979, regularization = 0, KKT residual^2 = 4.4549743925557305e-32 iter: 1, feasible, f(x) = 0.38281104128840648, t = 1 (tmax=1), res_primal = 4.694127352991637e-31, res_dual = 0.00053148293605249713, regularization = 0, eps = [Newton decrement] = 0.036232041231443968, KKT residual^2 = 2.2559131482777503e-33 iter: 2, feasible, f(x) = 0.382568491938858, t = 1 (tmax=1), res_primal = 3.4930015999973774e-31, res_dual = 4.3663384616231718e-07, regularization = 0, eps = [Newton decrement] = 0.00047382345258843207, KKT residual^2 = 1.9478698721811549e-35 iter: 3, feasible, f(x) = 0.38256819799127606, t = 1 (tmax=1), res_primal = 6.2369463465120906e-31, res_dual = 5.6380039259074998e-10, regularization = 0, eps = [Newton decrement] = 5.7244441645241056e-07, KKT residual^2 = 5.083047872057391e-38 solve_infeasible_start took 0.01061 s. check vertex 2430***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.65643067016139844, r_dual = ||g+A^T nue||^2 = 0.0012695938224458342) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.43322242197023714, t = 1 (tmax=1), res_primal = 7.6712682340418596e-31, res_dual = 0.069623663088660609, regularization = 0, KKT residual^2 = 6.0203029873479424e-32 iter: 1, feasible, f(x) = 0.41084114175134812, t = 1 (tmax=1), res_primal = 1.0278359244790865e-30, res_dual = 0.00057705851908840602, regularization = 0, eps = [Newton decrement] = 0.04218982729961368, KKT residual^2 = 4.5782070649767975e-33 iter: 2, feasible, f(x) = 0.41061281668364424, t = 1 (tmax=1), res_primal = 8.6459066962231033e-31, res_dual = 3.1832877342951449e-07, regularization = 0, eps = [Newton decrement] = 0.00044818957823088384, KKT residual^2 = 2.5934990918831698e-35 iter: 3, feasible, f(x) = 0.41061262184114161, t = 1 (tmax=1), res_primal = 6.1466965206055708e-31, res_dual = 4.5354943511798363e-10, regularization = 0, eps = [Newton decrement] = 3.780529290090171e-07, KKT residual^2 = 4.8992760118483693e-38 solve_infeasible_start took 0.016001000000000001 s. check vertex 2431***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.6983266145296253, r_dual = ||g+A^T nue||^2 = 0.00077798424994722688) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.35188086920605716, t = 1 (tmax=1), res_primal = 8.0235426638024409e-31, res_dual = 0.034868122424667837, regularization = 0, KKT residual^2 = 3.4410403812800131e-32 iter: 1, feasible, f(x) = 0.33600081766718271, t = 1 (tmax=1), res_primal = 9.3340948082103422e-31, res_dual = 0.00014253510857308816, regularization = 0, eps = [Newton decrement] = 0.030321273220425615, KKT residual^2 = 1.9949567608355857e-33 iter: 2, feasible, f(x) = 0.33591032705701129, t = 1 (tmax=1), res_primal = 7.9449099733090003e-31, res_dual = 5.2558731940481921e-08, regularization = 0, eps = [Newton decrement] = 0.00017847968599685239, KKT residual^2 = 1.1300461897074358e-35 iter: 3, feasible, f(x) = 0.33591027857362149, t = 1 (tmax=1), res_primal = 8.9592731385320801e-31, res_dual = 8.4206569070696868e-11, regularization = 0, eps = [Newton decrement] = 9.392462227952444e-08, KKT residual^2 = 8.2613838145020271e-39 solve_infeasible_start took 0.011964000000000001 s. check vertex 2437***** optimize via Newton (infeasible start version) with 198 unknowns and 163 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.94989176690151589, r_dual = ||g+A^T nue||^2 = 0.0012093181780094059) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.42002171710846614, t = 1 (tmax=1), res_primal = 6.7618068387654919e-31, res_dual = 0.05274080333027114, regularization = 0, KKT residual^2 = 5.5972339721049126e-32 iter: 1, feasible, f(x) = 0.39881639379409212, t = 1 (tmax=1), res_primal = 8.9285760933835625e-31, res_dual = 0.00030006666998393501, regularization = 0, eps = [Newton decrement] = 0.040243012746047031, KKT residual^2 = 3.0688049201342862e-33 iter: 2, feasible, f(x) = 0.39865532465680109, t = 1 (tmax=1), res_primal = 8.8644592961535315e-31, res_dual = 1.6726621805010235e-07, regularization = 0, eps = [Newton decrement] = 0.00031658381847233315, KKT residual^2 = 2.1634431956721015e-35 iter: 3, feasible, f(x) = 0.39865515701121157, t = 1 (tmax=1), res_primal = 1.1302925372505446e-30, res_dual = 8.3471420909041549e-10, regularization = 0, eps = [Newton decrement] = 3.1559145466735335e-07, KKT residual^2 = 3.912973313587328e-38 solve_infeasible_start took 0.022926000000000002 s. check vertex 2447***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.72235350199992276, r_dual = ||g+A^T nue||^2 = 0.0027894516665425348) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.60968870027238053, t = 1 (tmax=1), res_primal = 5.0372677727823511e-31, res_dual = 0.21046807285270386, regularization = 0, KKT residual^2 = 7.0541117210158627e-32 iter: 1, feasible, f(x) = 0.55971704561111291, t = 1 (tmax=1), res_primal = 4.6410797858265078e-31, res_dual = 0.0025839889345918949, regularization = 0, eps = [Newton decrement] = 0.09213036455089374, KKT residual^2 = 1.9790035899612195e-32 iter: 2, feasible, f(x) = 0.55881079708656933, t = 1 (tmax=1), res_primal = 4.2855172670527774e-31, res_dual = 4.0236735098517311e-06, regularization = 0, eps = [Newton decrement] = 0.0017507969026410277, KKT residual^2 = 1.0801283695481839e-34 iter: 3, feasible, f(x) = 0.55880806520081494, t = 1 (tmax=1), res_primal = 4.5090427163117733e-31, res_dual = 2.4049805870756554e-08, regularization = 0, eps = [Newton decrement] = 5.1107243211351446e-06, KKT residual^2 = 1.2071350482538605e-36 iter: 4, feasible, f(x) = 0.55880804983844112, t = 1 (tmax=1), res_primal = 1.0443073173936376e-30, res_dual = 1.5545955402251765e-10, regularization = 0, eps = [Newton decrement] = 2.8355073243423285e-08, KKT residual^2 = 7.3268009410620893e-39 solve_infeasible_start took 0.017870999999999998 s. check vertex 2449***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.98147871522145946, r_dual = ||g+A^T nue||^2 = 0.0023546475719671417) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.59645500343067737, t = 1 (tmax=1), res_primal = 6.2383389149663882e-31, res_dual = 0.19817673341033995, regularization = 0, KKT residual^2 = 5.6803852017128982e-32 iter: 1, feasible, f(x) = 0.55360734360137398, t = 1 (tmax=1), res_primal = 6.3447597919095946e-31, res_dual = 0.0021426310617980605, regularization = 0, eps = [Newton decrement] = 0.079783699226912391, KKT residual^2 = 9.7852557800417423e-33 iter: 2, feasible, f(x) = 0.55297707329194712, t = 1 (tmax=1), res_primal = 8.4217534287060157e-31, res_dual = 1.6206247328512606e-06, regularization = 0, eps = [Newton decrement] = 0.0012364459732736371, KKT residual^2 = 1.4174597855323168e-34 iter: 3, feasible, f(x) = 0.55297647181164333, t = 1 (tmax=1), res_primal = 6.0057310087445817e-31, res_dual = 2.1743086504594075e-09, regularization = 0, eps = [Newton decrement] = 1.170544157241501e-06, KKT residual^2 = 1.0181272838793064e-37 iter: 4, feasible, f(x) = 0.55297647109339843, t = 1 (tmax=1), res_primal = 5.8738720410455922e-31, res_dual = 4.4774611565173819e-12, regularization = 0, eps = [Newton decrement] = 1.372619716889289e-09, KKT residual^2 = 3.097170097844768e-40 solve_infeasible_start took 0.017644000000000003 s. check vertex 2457***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.82290064219672521, r_dual = ||g+A^T nue||^2 = 0.0015704012010594754) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.46076008169425064, t = 1 (tmax=1), res_primal = 5.2339157777385211e-31, res_dual = 0.068827815340388301, regularization = 0, KKT residual^2 = 6.9244389420595774e-32 iter: 1, feasible, f(x) = 0.43834357394482065, t = 1 (tmax=1), res_primal = 4.6634474989037148e-31, res_dual = 0.00032451014170453192, regularization = 0, eps = [Newton decrement] = 0.042622929860205425, KKT residual^2 = 3.1705468037026618e-33 iter: 2, feasible, f(x) = 0.43819276105351757, t = 1 (tmax=1), res_primal = 7.7451540514145464e-31, res_dual = 1.2019694570311317e-07, regularization = 0, eps = [Newton decrement] = 0.00029785502965226814, KKT residual^2 = 1.8159341809713056e-35 iter: 3, feasible, f(x) = 0.43819266095174886, t = 1 (tmax=1), res_primal = 5.7115285143870923e-31, res_dual = 5.9119218707794658e-10, regularization = 0, eps = [Newton decrement] = 1.8893508501537884e-07, KKT residual^2 = 2.0984647204579226e-38 solve_infeasible_start took 0.030695 s. check vertex 2458***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.80754796625094794, r_dual = ||g+A^T nue||^2 = 0.0017406594749027815) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.51516847885860406, t = 1 (tmax=1), res_primal = 6.2340179445548551e-31, res_dual = 0.096545056059787762, regularization = 0, KKT residual^2 = 6.3371182087487331e-32 iter: 1, feasible, f(x) = 0.48594342143463448, t = 1 (tmax=1), res_primal = 3.7729794702847466e-31, res_dual = 0.00067224482107740822, regularization = 0, eps = [Newton decrement] = 0.055147234861130559, KKT residual^2 = 5.0727080660849695e-33 iter: 2, feasible, f(x) = 0.48567531653645113, t = 1 (tmax=1), res_primal = 4.4797568554858128e-31, res_dual = 2.1433638310955771e-07, regularization = 0, eps = [Newton decrement] = 0.00053030494192868294, KKT residual^2 = 3.3948281970313062e-35 iter: 3, feasible, f(x) = 0.48567520552875543, t = 1 (tmax=1), res_primal = 3.7386971361048944e-31, res_dual = 4.9136184853491106e-10, regularization = 0, eps = [Newton decrement] = 2.1404593041955082e-07, KKT residual^2 = 3.2988554315949904e-38 solve_infeasible_start took 0.011278999999999999 s. check vertex 2461***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.67417419546973678, r_dual = ||g+A^T nue||^2 = 0.0020419461732456403) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.58074296821662375, t = 1 (tmax=1), res_primal = 6.9405144127559511e-31, res_dual = 0.13044458112562526, regularization = 0, KKT residual^2 = 1.3820128458768568e-31 iter: 1, feasible, f(x) = 0.54247558931392592, t = 1 (tmax=1), res_primal = 5.8429942099939006e-31, res_dual = 0.0012763315915485123, regularization = 0, eps = [Newton decrement] = 0.071514710880002788, KKT residual^2 = 4.593045240278517e-33 iter: 2, feasible, f(x) = 0.54195720555665838, t = 1 (tmax=1), res_primal = 5.1615398327484491e-31, res_dual = 1.213639521494371e-06, regularization = 0, eps = [Newton decrement] = 0.0010154679505918159, KKT residual^2 = 5.3058773324288135e-35 iter: 3, feasible, f(x) = 0.54195653070901473, t = 1 (tmax=1), res_primal = 5.0755113824484162e-31, res_dual = 3.9230219510616385e-09, regularization = 0, eps = [Newton decrement] = 1.2961674922494728e-06, KKT residual^2 = 1.2825376800699894e-37 iter: 4, feasible, f(x) = 0.54195652864582944, t = 1 (tmax=1), res_primal = 5.4068740678065702e-31, res_dual = 2.8237644010407623e-11, regularization = 0, eps = [Newton decrement] = 3.8088904742754897e-09, KKT residual^2 = 6.1391124905956119e-40 solve_infeasible_start took 0.015754000000000001 s. check vertex 2462***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.93583552102869016, r_dual = ||g+A^T nue||^2 = 0.0026166498527833365) using linear solver Umfpack iter: 0, infeasible, f(x) = 1.0430221805665845, t = 1 (tmax=1), res_primal = 5.0452283413838365e-31, res_dual = 0.9515096809980027, regularization = 0, KKT residual^2 = 1.7628612182989112e-31 iter: 1, feasible, f(x) = 0.91935195598337027, t = 1 (tmax=1), res_primal = 4.8584596628646325e-31, res_dual = 0.023168034015599123, regularization = 0, eps = [Newton decrement] = 0.22215695644875286, KKT residual^2 = 2.0917080757540276e-32 iter: 2, feasible, f(x) = 0.91487391912503313, t = 1 (tmax=1), res_primal = 4.6670480859108371e-31, res_dual = 6.2692459946558232e-05, regularization = 0, eps = [Newton decrement] = 0.0086487389983287474, KKT residual^2 = 1.5328799662746331e-33 iter: 3, feasible, f(x) = 0.91485981413464157, t = 1 (tmax=1), res_primal = 3.9842787644765817e-31, res_dual = 8.7106547307106113e-08, regularization = 0, eps = [Newton decrement] = 2.75581377228026e-05, KKT residual^2 = 2.9375538494229111e-36 iter: 4, feasible, f(x) = 0.91485978682325331, t = 1 (tmax=1), res_primal = 5.2934976123077508e-31, res_dual = 6.6201162549672886e-10, regularization = 0, eps = [Newton decrement] = 4.9917565823068189e-08, KKT residual^2 = 1.6321565067429356e-38 solve_infeasible_start took 0.012397 s. check vertex 2472***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.74650423990711035, r_dual = ||g+A^T nue||^2 = 0.0012718004332436825) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.41981798635060741, t = 1 (tmax=1), res_primal = 7.1126696899663067e-31, res_dual = 0.062498411652811253, regularization = 0, KKT residual^2 = 5.274697073149457e-32 iter: 1, feasible, f(x) = 0.39756801068196024, t = 1 (tmax=1), res_primal = 6.9142594331408763e-31, res_dual = 0.00040052842475989684, regularization = 0, eps = [Newton decrement] = 0.041973542640162717, KKT residual^2 = 3.3649864831741815e-33 iter: 2, feasible, f(x) = 0.39735618041954496, t = 1 (tmax=1), res_primal = 7.3129059581309472e-31, res_dual = 4.7581899529836549e-07, regularization = 0, eps = [Newton decrement] = 0.00041183042740384178, KKT residual^2 = 3.7104216089894415e-35 iter: 3, feasible, f(x) = 0.39735572076225445, t = 1 (tmax=1), res_primal = 6.9161899763102418e-31, res_dual = 3.0546937764636426e-09, regularization = 0, eps = [Newton decrement] = 8.5593353288543034e-07, KKT residual^2 = 1.0708522760928317e-37 solve_infeasible_start took 0.017777000000000001 s. check vertex 2473***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.9569135125190309, r_dual = ||g+A^T nue||^2 = 0.003325971104426242) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.57604997857614604, t = 1 (tmax=1), res_primal = 6.034799795874985e-31, res_dual = 0.15154545232545316, regularization = 0, KKT residual^2 = 7.0712148128644675e-32 iter: 1, feasible, f(x) = 0.54325396669807269, t = 1 (tmax=1), res_primal = 5.5614593306040535e-31, res_dual = 0.0013459987977548213, regularization = 0, eps = [Newton decrement] = 0.061539491588534341, KKT residual^2 = 1.3041261974008699e-32 iter: 2, feasible, f(x) = 0.54286367471812136, t = 1 (tmax=1), res_primal = 5.6197887747411485e-31, res_dual = 7.6612067858169776e-07, regularization = 0, eps = [Newton decrement] = 0.00076680191108004984, KKT residual^2 = 8.2785147766521346e-35 iter: 3, feasible, f(x) = 0.5428633268219627, t = 1 (tmax=1), res_primal = 4.9037402827779208e-31, res_dual = 1.1227007023314405e-09, regularization = 0, eps = [Newton decrement] = 6.7493344124211194e-07, KKT residual^2 = 8.5230846905438688e-38 solve_infeasible_start took 0.0095449999999999997 s. check vertex 2474***** optimize via Newton (infeasible start version) with 72 unknowns and 58 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.27591810160519109, r_dual = ||g+A^T nue||^2 = 0.0079269428835121586) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.68178758681958052, t = 1 (tmax=1), res_primal = 1.6412212329794561e-31, res_dual = 0.27520848989631541, regularization = 0, KKT residual^2 = 2.7954215336260486e-31 iter: 1, feasible, f(x) = 0.64246497374510314, t = 1 (tmax=1), res_primal = 2.4560529806834613e-31, res_dual = 0.0020246495517103023, regularization = 0, eps = [Newton decrement] = 0.073560802536929176, KKT residual^2 = 2.3479378616937082e-32 iter: 2, feasible, f(x) = 0.64197028503640907, t = 1 (tmax=1), res_primal = 2.5313416795211631e-31, res_dual = 1.4758567517745172e-06, regularization = 0, eps = [Newton decrement] = 0.00097015311461665608, KKT residual^2 = 7.0819630178943502e-35 iter: 3, feasible, f(x) = 0.64196976137271133, t = 1 (tmax=1), res_primal = 1.960937910703435e-31, res_dual = 3.5400272612209629e-09, regularization = 0, eps = [Newton decrement] = 1.0100277862929797e-06, KKT residual^2 = 2.0016419789859347e-37 iter: 4, feasible, f(x) = 0.64196976053234978, t = 1 (tmax=1), res_primal = 1.9090765098634239e-31, res_dual = 6.6279763506081204e-12, regularization = 0, eps = [Newton decrement] = 1.6114499685250413e-09, KKT residual^2 = 1.0514854598195038e-39 solve_infeasible_start took 0.0056010000000000001 s. check vertex 2475***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.86811569865374072, r_dual = ||g+A^T nue||^2 = 0.0012697162277246028) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.48012662137206286, t = 1 (tmax=1), res_primal = 5.1524329574868024e-31, res_dual = 0.068883571203005839, regularization = 0, KKT residual^2 = 7.2682579305522435e-32 iter: 1, feasible, f(x) = 0.4560748467655712, t = 1 (tmax=1), res_primal = 5.1669253192141074e-31, res_dual = 0.00038822696006485257, regularization = 0, eps = [Newton decrement] = 0.045628803649641635, KKT residual^2 = 3.8281126130401265e-33 iter: 2, feasible, f(x) = 0.455892393293994, t = 1 (tmax=1), res_primal = 4.8586168116457534e-31, res_dual = 1.1898200743292831e-07, regularization = 0, eps = [Newton decrement] = 0.00036147857766752204, KKT residual^2 = 2.3600321861031124e-35 iter: 3, feasible, f(x) = 0.45589232162332061, t = 1 (tmax=1), res_primal = 4.5735966249780678e-31, res_dual = 5.5161687153061823e-10, regularization = 0, eps = [Newton decrement] = 1.3536908656350168e-07, KKT residual^2 = 1.7775292128647498e-38 solve_infeasible_start took 0.0097200000000000012 s. check vertex 2476***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.54503696493202303, r_dual = ||g+A^T nue||^2 = 0.0023446915852982789) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.48522446103711642, t = 1 (tmax=1), res_primal = 3.7317622692652176e-31, res_dual = 0.085793294364942776, regularization = 0, KKT residual^2 = 7.4534582220810462e-32 iter: 1, feasible, f(x) = 0.46435026325559131, t = 1 (tmax=1), res_primal = 5.0935044142348788e-31, res_dual = 0.0003701005009363421, regularization = 0, eps = [Newton decrement] = 0.039770680831717559, KKT residual^2 = 4.5994214244401705e-33 iter: 2, feasible, f(x) = 0.46421763942330141, t = 1 (tmax=1), res_primal = 4.3535582039550323e-31, res_dual = 6.8700399178586552e-08, regularization = 0, eps = [Newton decrement] = 0.00026298896523855778, KKT residual^2 = 1.2775281816628223e-35 iter: 3, feasible, f(x) = 0.46421760173956428, t = 1 (tmax=1), res_primal = 4.9759025921758418e-31, res_dual = 1.0129864338974623e-10, regularization = 0, eps = [Newton decrement] = 7.3069021130829626e-08, KKT residual^2 = 1.2692559435154562e-38 solve_infeasible_start took 0.0074030000000000007 s. check vertex 2490***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.71824387882023122, r_dual = ||g+A^T nue||^2 = 0.0031406983617236583) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.5382414681910046, t = 1 (tmax=1), res_primal = 4.3670293213567691e-31, res_dual = 0.13695568861566779, regularization = 0, KKT residual^2 = 5.5702433906730683e-32 iter: 1, feasible, f(x) = 0.5067923551004937, t = 1 (tmax=1), res_primal = 3.8209384406469924e-31, res_dual = 0.0013795358794711679, regularization = 0, eps = [Newton decrement] = 0.058884237554695761, KKT residual^2 = 4.6615029689489756e-33 iter: 2, feasible, f(x) = 0.50637386477493818, t = 1 (tmax=1), res_primal = 8.0310422013390819e-31, res_dual = 8.0618060546230715e-07, regularization = 0, eps = [Newton decrement] = 0.00082332499651399942, KKT residual^2 = 4.7441245327344054e-35 iter: 3, feasible, f(x) = 0.5063735507992988, t = 1 (tmax=1), res_primal = 5.3916487012089734e-31, res_dual = 6.144368773805149e-10, regularization = 0, eps = [Newton decrement] = 6.1588411579743015e-07, KKT residual^2 = 3.4163925165742103e-38 solve_infeasible_start took 0.0065970000000000004 s. check vertex 2501***** optimize via Newton (infeasible start version) with 72 unknowns and 58 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.80180209597707697, r_dual = ||g+A^T nue||^2 = 0.0071473524011033476) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.7418763293023577, t = 1 (tmax=1), res_primal = 3.2013796107867599e-31, res_dual = 0.38212769142630804, regularization = 0, KKT residual^2 = 1.2044428855462252e-31 iter: 1, feasible, f(x) = 0.68670078783549571, t = 1 (tmax=1), res_primal = 3.9728598065547356e-31, res_dual = 0.0067922071619775457, regularization = 0, eps = [Newton decrement] = 0.10123699177322948, KKT residual^2 = 2.0303069681459209e-32 iter: 2, feasible, f(x) = 0.68535914568217837, t = 1 (tmax=1), res_primal = 1.5994189677347388e-31, res_dual = 1.0232225855396925e-05, regularization = 0, eps = [Newton decrement] = 0.0026125462670295767, KKT residual^2 = 3.3801155619257321e-34 iter: 3, feasible, f(x) = 0.68535670613272792, t = 1 (tmax=1), res_primal = 3.3377490783903733e-31, res_dual = 6.8975174579334868e-09, regularization = 0, eps = [Newton decrement] = 4.802112059129485e-06, KKT residual^2 = 6.4449312551451003e-37 iter: 4, feasible, f(x) = 0.68535670441545982, t = 1 (tmax=1), res_primal = 1.8220771810626278e-31, res_dual = 1.9746463717826428e-11, regularization = 0, eps = [Newton decrement] = 3.267918781811748e-09, KKT residual^2 = 7.4144568986005658e-40 solve_infeasible_start took 0.0057480000000000005 s. check vertex 2503***** optimize via Newton (infeasible start version) with 72 unknowns and 58 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.63972999501418482, r_dual = ||g+A^T nue||^2 = 0.0064016817867650882) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.69966729100964709, t = 1 (tmax=1), res_primal = 2.3229775252157746e-31, res_dual = 0.27342737746411061, regularization = 0, KKT residual^2 = 6.4990811763015077e-32 iter: 1, feasible, f(x) = 0.65930509461548681, t = 1 (tmax=1), res_primal = 2.1886228540151184e-31, res_dual = 0.0018905163157921293, regularization = 0, eps = [Newton decrement] = 0.075781621835663032, KKT residual^2 = 8.5169342464454219e-33 iter: 2, feasible, f(x) = 0.65885752263298469, t = 1 (tmax=1), res_primal = 1.8127082064479379e-31, res_dual = 7.7972943388202003e-07, regularization = 0, eps = [Newton decrement] = 0.00088327177632478693, KKT residual^2 = 7.181087016443064e-35 iter: 3, feasible, f(x) = 0.65885726763678476, t = 1 (tmax=1), res_primal = 2.0321861455582555e-31, res_dual = 1.1767541044146877e-09, regularization = 0, eps = [Newton decrement] = 4.9631501740813135e-07, KKT residual^2 = 7.6884060410062247e-38 solve_infeasible_start took 0.0079819999999999995 s. check vertex 2504***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.5165318209616202, r_dual = ||g+A^T nue||^2 = 0.0019069725066505256) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.40988328587524792, t = 1 (tmax=1), res_primal = 3.1301865051882237e-31, res_dual = 0.055244314718953101, regularization = 0, KKT residual^2 = 7.0137663757781966e-32 iter: 1, feasible, f(x) = 0.39210833778950016, t = 1 (tmax=1), res_primal = 3.6843086911432537e-31, res_dual = 0.00018950782234268006, regularization = 0, eps = [Newton decrement] = 0.034017324415754877, KKT residual^2 = 2.9340201435587709e-33 iter: 2, feasible, f(x) = 0.39201850542906236, t = 1 (tmax=1), res_primal = 4.7075499419153605e-31, res_dual = 2.373248100137999e-08, regularization = 0, eps = [Newton decrement] = 0.00017846329449570824, KKT residual^2 = 1.1546213834533101e-35 iter: 3, feasible, f(x) = 0.39201848961403418, t = 1 (tmax=1), res_primal = 4.1224769556443337e-31, res_dual = 2.5796376039589128e-11, regularization = 0, eps = [Newton decrement] = 3.0879477233572139e-08, KKT residual^2 = 4.6838639318236896e-39 solve_infeasible_start took 0.011585000000000002 s. check vertex 2505***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.071517691034416, r_dual = ||g+A^T nue||^2 = 0.0010508484200612463) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.44276469839950638, t = 1 (tmax=1), res_primal = 5.5228186906315902e-31, res_dual = 0.060894525516099487, regularization = 0, KKT residual^2 = 4.5003232332423512e-32 iter: 1, feasible, f(x) = 0.41751997029033694, t = 1 (tmax=1), res_primal = 7.7230933628201426e-31, res_dual = 0.000581861579219329, regularization = 0, eps = [Newton decrement] = 0.04736021334407893, KKT residual^2 = 4.3499582049354551e-33 iter: 2, feasible, f(x) = 0.41719798921450624, t = 1 (tmax=1), res_primal = 9.7737603484223062e-31, res_dual = 4.5613515090840349e-07, regularization = 0, eps = [Newton decrement] = 0.00063089968235866304, KKT residual^2 = 3.0628396557499528e-35 iter: 3, feasible, f(x) = 0.41719763598084214, t = 1 (tmax=1), res_primal = 7.1557508878731012e-31, res_dual = 6.7568015224762068e-10, regularization = 0, eps = [Newton decrement] = 6.8794062194157409e-07, KKT residual^2 = 4.6318143631754342e-38 solve_infeasible_start took 0.020254000000000001 s. check vertex 2507***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.029163443178005, r_dual = ||g+A^T nue||^2 = 0.0047241618997342413) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.64012199229268585, t = 1 (tmax=1), res_primal = 4.558210334270573e-31, res_dual = 0.24926878395732077, regularization = 0, KKT residual^2 = 5.3918060913803452e-32 iter: 1, feasible, f(x) = 0.59721938086062298, t = 1 (tmax=1), res_primal = 4.4259208296751085e-31, res_dual = 0.0020720823804080313, regularization = 0, eps = [Newton decrement] = 0.080002928716312094, KKT residual^2 = 9.6316036729631472e-33 iter: 2, feasible, f(x) = 0.59665349429059411, t = 1 (tmax=1), res_primal = 4.3845393927491869e-31, res_dual = 1.6694099297301595e-06, regularization = 0, eps = [Newton decrement] = 0.0011084371075595462, KKT residual^2 = 5.1972822860250515e-35 iter: 3, feasible, f(x) = 0.59665282125464147, t = 1 (tmax=1), res_primal = 4.4300186254416673e-31, res_dual = 5.9609045332204632e-09, regularization = 0, eps = [Newton decrement] = 1.2835639340057343e-06, KKT residual^2 = 2.1018602254263649e-37 iter: 4, feasible, f(x) = 0.5966528192159124, t = 1 (tmax=1), res_primal = 4.0924679497443343e-31, res_dual = 2.6079225053057352e-11, regularization = 0, eps = [Newton decrement] = 3.8178500065764705e-09, KKT residual^2 = 4.7889809579029067e-40 solve_infeasible_start took 0.012718 s. check vertex 2509***** optimize via Newton (infeasible start version) with 198 unknowns and 163 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.91587475696996157, r_dual = ||g+A^T nue||^2 = 0.00076134714639870197) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.41760439165252217, t = 1 (tmax=1), res_primal = 6.3668454647706684e-31, res_dual = 0.040691420616433029, regularization = 0, KKT residual^2 = 6.8923002993666428e-32 iter: 1, feasible, f(x) = 0.3973089994939894, t = 1 (tmax=1), res_primal = 8.6430556989873534e-31, res_dual = 0.00018232919563403261, regularization = 0, eps = [Newton decrement] = 0.038697590896243216, KKT residual^2 = 4.4389795583276823e-33 iter: 2, feasible, f(x) = 0.39718809767787305, t = 1 (tmax=1), res_primal = 8.9733722315743596e-31, res_dual = 3.6440586086284284e-08, regularization = 0, eps = [Newton decrement] = 0.00023991563689683654, KKT residual^2 = 1.2131542747742385e-35 iter: 3, feasible, f(x) = 0.39718806572759502, t = 1 (tmax=1), res_primal = 8.7855361076869771e-31, res_dual = 1.0233147244374538e-10, regularization = 0, eps = [Newton decrement] = 6.1330811889195505e-08, KKT residual^2 = 9.6215014193308785e-39 solve_infeasible_start took 0.024937999999999998 s. check vertex 2511***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.99094521976689609, r_dual = ||g+A^T nue||^2 = 0.0012336215527107234) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.60165328460887113, t = 1 (tmax=1), res_primal = 6.9817451336767045e-31, res_dual = 0.17299068957520553, regularization = 0, KKT residual^2 = 5.3547874082192752e-32 iter: 1, feasible, f(x) = 0.55639192463683274, t = 1 (tmax=1), res_primal = 7.1959267164400278e-31, res_dual = 0.0018077304070322829, regularization = 0, eps = [Newton decrement] = 0.084087209204471589, KKT residual^2 = 7.5642750544357011e-33 iter: 2, feasible, f(x) = 0.55566539095620315, t = 1 (tmax=1), res_primal = 8.6007524510506137e-31, res_dual = 2.1745775697134259e-06, regularization = 0, eps = [Newton decrement] = 0.0014145377431353534, KKT residual^2 = 1.2328670908451842e-34 iter: 3, feasible, f(x) = 0.5556638910421603, t = 1 (tmax=1), res_primal = 7.4663842610182487e-31, res_dual = 1.0862013038916557e-08, regularization = 0, eps = [Newton decrement] = 2.8340327345333917e-06, KKT residual^2 = 5.1844322071611716e-37 iter: 4, feasible, f(x) = 0.55566388346812379, t = 1 (tmax=1), res_primal = 5.7015743011411354e-31, res_dual = 1.0412566978571782e-10, regularization = 0, eps = [Newton decrement] = 1.382914682506995e-08, KKT residual^2 = 3.2371228293526077e-39 solve_infeasible_start took 0.017808000000000001 s. check vertex 2517***** optimize via Newton (infeasible start version) with 198 unknowns and 163 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.82234953428256741, r_dual = ||g+A^T nue||^2 = 0.00084956113659655382) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.42290378703250209, t = 1 (tmax=1), res_primal = 6.9479862637479968e-31, res_dual = 0.064347079732357718, regularization = 0, KKT residual^2 = 6.2953601024778756e-32 iter: 1, feasible, f(x) = 0.39395700303172942, t = 1 (tmax=1), res_primal = 8.3589384862440049e-31, res_dual = 0.0012235126046749908, regularization = 0, eps = [Newton decrement] = 0.053133204074536949, KKT residual^2 = 3.6090272609064928e-33 iter: 2, feasible, f(x) = 0.39319884690026274, t = 1 (tmax=1), res_primal = 9.6458608004600835e-31, res_dual = 4.125092588608602e-06, regularization = 0, eps = [Newton decrement] = 0.0014424377380543459, KKT residual^2 = 9.242831136440023e-35 iter: 3, feasible, f(x) = 0.39319467610492398, t = 1 (tmax=1), res_primal = 1.0508868241763148e-30, res_dual = 1.7019356664052469e-08, regularization = 0, eps = [Newton decrement] = 7.9348005193134154e-06, KKT residual^2 = 7.3398391617208575e-37 iter: 4, feasible, f(x) = 0.39319465893327393, t = 1 (tmax=1), res_primal = 9.128050551141189e-31, res_dual = 1.3986004006341238e-10, regularization = 0, eps = [Newton decrement] = 3.157201354148761e-08, KKT residual^2 = 5.0739081538441772e-39 solve_infeasible_start took 0.029048000000000001 s. check vertex 2518***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.69665523120682682, r_dual = ||g+A^T nue||^2 = 0.0017391499165342118) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.45344619886538995, t = 1 (tmax=1), res_primal = 8.1718806215232174e-31, res_dual = 0.070640551894081666, regularization = 0, KKT residual^2 = 6.4537826512052081e-32 iter: 1, feasible, f(x) = 0.4300703212828747, t = 1 (tmax=1), res_primal = 6.1654912363277914e-31, res_dual = 0.00041681780868134594, regularization = 0, eps = [Newton decrement] = 0.044316736728646548, KKT residual^2 = 3.9975903505425712e-33 iter: 2, feasible, f(x) = 0.4298894892396703, t = 1 (tmax=1), res_primal = 6.2367561926125025e-31, res_dual = 1.4113302073764594e-07, regularization = 0, eps = [Newton decrement] = 0.00035747479386485535, KKT residual^2 = 3.4559795182461601e-35 iter: 3, feasible, f(x) = 0.42988941231490396, t = 1 (tmax=1), res_primal = 5.9161573468110881e-31, res_dual = 2.4820399954784722e-10, regularization = 0, eps = [Newton decrement] = 1.4892167200642511e-07, KKT residual^2 = 2.9812484971508695e-38 solve_infeasible_start took 0.014827 s. check vertex 2527***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.94631004181104728, r_dual = ||g+A^T nue||^2 = 0.0014857050580786629) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.48409859075345629, t = 1 (tmax=1), res_primal = 8.3158045709178072e-31, res_dual = 0.072803101566371514, regularization = 0, KKT residual^2 = 8.0416187064983647e-32 iter: 1, feasible, f(x) = 0.45767926530605607, t = 1 (tmax=1), res_primal = 6.2481612044201313e-31, res_dual = 0.00043869051254963922, regularization = 0, eps = [Newton decrement] = 0.050051676017429235, KKT residual^2 = 3.6217893019513493e-33 iter: 2, feasible, f(x) = 0.45746886718521423, t = 1 (tmax=1), res_primal = 7.9495413471466838e-31, res_dual = 1.1039596428507655e-07, regularization = 0, eps = [Newton decrement] = 0.00041671841803672796, KKT residual^2 = 2.3752834209099639e-35 iter: 3, feasible, f(x) = 0.45746879896086401, t = 1 (tmax=1), res_primal = 5.0401236506541176e-31, res_dual = 2.2079529329869047e-10, regularization = 0, eps = [Newton decrement] = 1.3217057925970939e-07, KKT residual^2 = 1.3312766112017694e-38 solve_infeasible_start took 0.016941999999999999 s. check vertex 2536***** optimize via Newton (infeasible start version) with 198 unknowns and 163 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.4785887328988776, r_dual = ||g+A^T nue||^2 = 0.0010130264014283786) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.53033186264849341, t = 1 (tmax=1), res_primal = 1.0924134263337894e-30, res_dual = 0.070145120456332588, regularization = 0, KKT residual^2 = 8.3937408238304928e-32 iter: 1, feasible, f(x) = 0.49864696827562782, t = 1 (tmax=1), res_primal = 1.0998172417142284e-30, res_dual = 0.00060252546138255013, regularization = 0, eps = [Newton decrement] = 0.05957335482881488, KKT residual^2 = 3.4812212338460998e-33 iter: 2, feasible, f(x) = 0.49830214990427346, t = 1 (tmax=1), res_primal = 9.1910237341491518e-31, res_dual = 2.9504252255501311e-07, regularization = 0, eps = [Newton decrement] = 0.00068101906849863021, KKT residual^2 = 4.8560498581186043e-35 iter: 3, feasible, f(x) = 0.4983019618461858, t = 1 (tmax=1), res_primal = 1.4782718839833513e-30, res_dual = 1.2070431287957968e-09, regularization = 0, eps = [Newton decrement] = 3.5992911285292091e-07, KKT residual^2 = 3.6342573561833438e-38 solve_infeasible_start took 0.025440999999999998 s. check vertex 2537***** optimize via Newton (infeasible start version) with 198 unknowns and 163 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.98338309657166678, r_dual = ||g+A^T nue||^2 = 0.0010702148624716567) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.4296268272176943, t = 1 (tmax=1), res_primal = 6.2709296493553142e-31, res_dual = 0.0514769136212627, regularization = 0, KKT residual^2 = 5.1368823251472621e-32 iter: 1, feasible, f(x) = 0.4072158248302068, t = 1 (tmax=1), res_primal = 8.5806546449098932e-31, res_dual = 0.00027004147339956591, regularization = 0, eps = [Newton decrement] = 0.042559431338108113, KKT residual^2 = 2.6945818577970611e-33 iter: 2, feasible, f(x) = 0.40705595200795319, t = 1 (tmax=1), res_primal = 1.033570896630971e-30, res_dual = 9.8686022527769833e-08, regularization = 0, eps = [Newton decrement] = 0.00031565506290453772, KKT residual^2 = 2.5464073142994507e-35 iter: 3, feasible, f(x) = 0.40705584854524612, t = 1 (tmax=1), res_primal = 8.303992600277783e-31, res_dual = 4.1841076215669853e-10, regularization = 0, eps = [Newton decrement] = 1.962595613825388e-07, KKT residual^2 = 2.5643642486066083e-38 solve_infeasible_start took 0.018355 s. check vertex 2539***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.66271778640182022, r_dual = ||g+A^T nue||^2 = 0.00065448065671337837) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.32952176360981467, t = 1 (tmax=1), res_primal = 6.6321880202674459e-31, res_dual = 0.030783441153750406, regularization = 0, KKT residual^2 = 4.2540671384193456e-32 iter: 1, feasible, f(x) = 0.31509679579612504, t = 1 (tmax=1), res_primal = 8.0968053570973389e-31, res_dual = 0.00012211749929715279, regularization = 0, eps = [Newton decrement] = 0.027582607057031756, KKT residual^2 = 1.9565886000819578e-33 iter: 2, feasible, f(x) = 0.31501865825428016, t = 1 (tmax=1), res_primal = 8.8052699865508699e-31, res_dual = 4.3581453630748968e-08, regularization = 0, eps = [Newton decrement] = 0.00015440350782502371, KKT residual^2 = 7.779944309067478e-36 iter: 3, feasible, f(x) = 0.31501861330166725, t = 1 (tmax=1), res_primal = 9.8092460894521652e-31, res_dual = 1.7950172675031917e-10, regularization = 0, eps = [Newton decrement] = 8.5099979006918847e-08, KKT residual^2 = 1.164517250771118e-38 solve_infeasible_start took 0.014007 s. check vertex 2545***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.80024466087128876, r_dual = ||g+A^T nue||^2 = 0.002800183979533538) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.51854121698208588, t = 1 (tmax=1), res_primal = 3.823821573247092e-31, res_dual = 0.14099821848222316, regularization = 0, KKT residual^2 = 5.4679062417114232e-32 iter: 1, feasible, f(x) = 0.49004442780416491, t = 1 (tmax=1), res_primal = 3.9955544561230661e-31, res_dual = 0.0010930706636769422, regularization = 0, eps = [Newton decrement] = 0.05332610910360483, KKT residual^2 = 4.7670282713910764e-33 iter: 2, feasible, f(x) = 0.48969091872123804, t = 1 (tmax=1), res_primal = 4.4958834914454124e-31, res_dual = 8.8202475255293198e-07, regularization = 0, eps = [Newton decrement] = 0.00069086961855747823, KKT residual^2 = 3.6991214856797515e-35 iter: 3, feasible, f(x) = 0.48969048361260037, t = 1 (tmax=1), res_primal = 3.39311570959977e-31, res_dual = 2.0220392360175229e-09, regularization = 0, eps = [Newton decrement] = 8.3807745595669749e-07, KKT residual^2 = 1.069311522171927e-37 solve_infeasible_start took 0.0089359999999999995 s. check vertex 2546***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.78478784593457973, r_dual = ||g+A^T nue||^2 = 0.0028298344247125943) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.64669506477786842, t = 1 (tmax=1), res_primal = 3.9452541620541907e-31, res_dual = 0.30977792315561714, regularization = 0, KKT residual^2 = 6.498403379747868e-32 iter: 1, feasible, f(x) = 0.59806444935380054, t = 1 (tmax=1), res_primal = 2.4808113403610021e-31, res_dual = 0.0033187365922094547, regularization = 0, eps = [Newton decrement] = 0.089439730138608051, KKT residual^2 = 1.2203442532858026e-32 iter: 2, feasible, f(x) = 0.59707190662624865, t = 1 (tmax=1), res_primal = 3.1771827250209955e-31, res_dual = 5.0288034768963899e-06, regularization = 0, eps = [Newton decrement] = 0.0019228147510066517, KKT residual^2 = 9.6296032265964471e-35 iter: 3, feasible, f(x) = 0.59706972594145213, t = 1 (tmax=1), res_primal = 3.1755917193239501e-31, res_dual = 1.4755179651420546e-08, regularization = 0, eps = [Newton decrement] = 4.2015313002190224e-06, KKT residual^2 = 5.7015461892601626e-37 iter: 4, feasible, f(x) = 0.5970697220535236, t = 1 (tmax=1), res_primal = 3.0636613805896011e-31, res_dual = 3.2775678126911279e-11, regularization = 0, eps = [Newton decrement] = 7.4196392955203443e-09, KKT residual^2 = 1.4913897080266855e-39 solve_infeasible_start took 0.012071 s. check vertex 2553***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.81295991482801266, r_dual = ||g+A^T nue||^2 = 0.0011174862305601465) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.42010949656546392, t = 1 (tmax=1), res_primal = 7.2504322295699424e-31, res_dual = 0.066003383571012653, regularization = 0, KKT residual^2 = 8.2723252140008135e-32 iter: 1, feasible, f(x) = 0.39567112693314016, t = 1 (tmax=1), res_primal = 6.6341943180336449e-31, res_dual = 0.00064358171444512844, regularization = 0, eps = [Newton decrement] = 0.045533996641537157, KKT residual^2 = 3.1080601017303601e-33 iter: 2, feasible, f(x) = 0.39531093341513213, t = 1 (tmax=1), res_primal = 6.9562929260355462e-31, res_dual = 9.1969073491406567e-07, regularization = 0, eps = [Newton decrement] = 0.00069505642745604506, KKT residual^2 = 7.1301011585822662e-35 iter: 3, feasible, f(x) = 0.39531001835838075, t = 1 (tmax=1), res_primal = 8.5264612702428952e-31, res_dual = 3.0987841053550568e-09, regularization = 0, eps = [Newton decrement] = 1.7455736352949591e-06, KKT residual^2 = 2.7411345668978934e-37 iter: 4, feasible, f(x) = 0.39531001567986701, t = 1 (tmax=1), res_primal = 7.7594166544171862e-31, res_dual = 1.443898805844684e-11, regularization = 0, eps = [Newton decrement] = 5.0239544564059666e-09, KKT residual^2 = 1.4710403766909175e-39 solve_infeasible_start took 0.017324000000000003 s. check vertex 2561***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.70564137873535093, r_dual = ||g+A^T nue||^2 = 0.0013724487125302595) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.44843250668850998, t = 1 (tmax=1), res_primal = 5.5461600991352897e-31, res_dual = 0.065376899402372513, regularization = 0, KKT residual^2 = 7.0289912957312947e-32 iter: 1, feasible, f(x) = 0.42827453298338786, t = 1 (tmax=1), res_primal = 3.8342487384892741e-31, res_dual = 0.0002595685130291952, regularization = 0, eps = [Newton decrement] = 0.038483308026869563, KKT residual^2 = 4.5009597248136762e-33 iter: 2, feasible, f(x) = 0.4281608781667523, t = 1 (tmax=1), res_primal = 3.8877037195385247e-31, res_dual = 4.6191577087460177e-08, regularization = 0, eps = [Newton decrement] = 0.00022549105387687003, KKT residual^2 = 3.3819818095963969e-35 iter: 3, feasible, f(x) = 0.42816084756729111, t = 1 (tmax=1), res_primal = 3.623718197390592e-31, res_dual = 9.1552234629294266e-11, regularization = 0, eps = [Newton decrement] = 5.9134296514726325e-08, KKT residual^2 = 8.775581113281473e-39 solve_infeasible_start took 0.01257 s. check vertex 2563***** optimize via Newton (infeasible start version) with 72 unknowns and 58 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.65935788156224817, r_dual = ||g+A^T nue||^2 = 0.0067634215564022996) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.70642104277051354, t = 1 (tmax=1), res_primal = 3.2878476471665843e-31, res_dual = 0.29828710004925607, regularization = 0, KKT residual^2 = 8.1367107634397392e-32 iter: 1, feasible, f(x) = 0.66402423777619757, t = 1 (tmax=1), res_primal = 2.3841996285623921e-31, res_dual = 0.0022696503596389512, regularization = 0, eps = [Newton decrement] = 0.079301791819146233, KKT residual^2 = 1.1305212258602077e-32 iter: 2, feasible, f(x) = 0.66349364169739777, t = 1 (tmax=1), res_primal = 2.0568378939144489e-31, res_dual = 1.3675657340221428e-06, regularization = 0, eps = [Newton decrement] = 0.0010433344364768724, KKT residual^2 = 1.2092910117768185e-34 iter: 3, feasible, f(x) = 0.66349320663758515, t = 1 (tmax=1), res_primal = 2.0874224730525797e-31, res_dual = 2.9220061725616754e-09, regularization = 0, eps = [Newton decrement] = 8.4149126850959746e-07, KKT residual^2 = 1.9166665430292681e-37 solve_infeasible_start took 0.0071260000000000004 s. check vertex 2568***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.97609009450801865, r_dual = ||g+A^T nue||^2 = 0.0013533231981006893) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.47744224695489162, t = 1 (tmax=1), res_primal = 6.2644318681894906e-31, res_dual = 0.086037875386318546, regularization = 0, KKT residual^2 = 5.7162292108949573e-32 iter: 1, feasible, f(x) = 0.45150875261639345, t = 1 (tmax=1), res_primal = 8.2979261473132791e-31, res_dual = 0.000722934154664384, regularization = 0, eps = [Newton decrement] = 0.048766746748176562, KKT residual^2 = 2.8878437314486662e-33 iter: 2, feasible, f(x) = 0.45120945583467298, t = 1 (tmax=1), res_primal = 4.9292041994803071e-31, res_dual = 4.8822493120592542e-07, regularization = 0, eps = [Newton decrement] = 0.00058761653817387093, KKT residual^2 = 3.8246456418459269e-35 iter: 3, feasible, f(x) = 0.45120917609537448, t = 1 (tmax=1), res_primal = 6.6775010374761406e-31, res_dual = 1.0527883663205865e-09, regularization = 0, eps = [Newton decrement] = 5.422583439023036e-07, KKT residual^2 = 3.7532628906785085e-38 solve_infeasible_start took 0.01159 s. check vertex 2569***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.73740745709056976, r_dual = ||g+A^T nue||^2 = 0.0028486793152338072) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.6695774257591719, t = 1 (tmax=1), res_primal = 6.7003546304940309e-31, res_dual = 0.25935575937055827, regularization = 0, KKT residual^2 = 9.5339509513714767e-32 iter: 1, feasible, f(x) = 0.62078219631485831, t = 1 (tmax=1), res_primal = 3.7978532712608968e-31, res_dual = 0.0027723720450609553, regularization = 0, eps = [Newton decrement] = 0.090458496051186763, KKT residual^2 = 1.3557275345017698e-32 iter: 2, feasible, f(x) = 0.61996921032276375, t = 1 (tmax=1), res_primal = 3.7503892433001492e-31, res_dual = 2.8250701143772143e-06, regularization = 0, eps = [Newton decrement] = 0.0015865537550183424, KKT residual^2 = 1.1986778893545286e-34 iter: 3, feasible, f(x) = 0.6199679451847524, t = 1 (tmax=1), res_primal = 3.8274729658945571e-31, res_dual = 6.8816885033264621e-09, regularization = 0, eps = [Newton decrement] = 2.433029524152445e-06, KKT residual^2 = 4.0059695992297301e-37 iter: 4, feasible, f(x) = 0.61996794192480764, t = 1 (tmax=1), res_primal = 4.6754159785057005e-31, res_dual = 3.3822208440752133e-11, regularization = 0, eps = [Newton decrement] = 6.0689474605253243e-09, KKT residual^2 = 1.2974156286733368e-39 solve_infeasible_start took 0.018239000000000002 s. check vertex 2573***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.1115619616581673, r_dual = ||g+A^T nue||^2 = 0.0032379412354280844) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.90923435151496901, t = 0.98049728265305625 (tmax=0.98049728265305625), res_primal = 0.00042278924360873667, res_dual = 2.057054396861449, regularization = 0, KKT residual^2 = 1.2280048936065758e-31 iter: 1, infeasible, f(x) = 0.79407927020882252, t = 1 (tmax=1), res_primal = 4.6865737087073326e-31, res_dual = 0.12369196241406584, regularization = 0, KKT residual^2 = 4.6381586709432426e-32 iter: 2, feasible, f(x) = 0.77976670194466791, t = 1 (tmax=1), res_primal = 6.1223489672947995e-31, res_dual = 0.001846553880154184, regularization = 0, eps = [Newton decrement] = 0.02635815263780783, KKT residual^2 = 6.8296975949026276e-33 iter: 3, feasible, f(x) = 0.7795074536132347, t = 1 (tmax=1), res_primal = 5.7973926658129435e-31, res_dual = 1.2991463294976096e-06, regularization = 0, eps = [Newton decrement] = 0.00050769127612422407, KKT residual^2 = 9.5398912662609598e-35 iter: 4, feasible, f(x) = 0.77950712740982664, t = 1 (tmax=1), res_primal = 5.7888617189652317e-31, res_dual = 5.1665566603712329e-09, regularization = 0, eps = [Newton decrement] = 6.1543552218558605e-07, KKT residual^2 = 8.1200475980802975e-38 solve_infeasible_start took 0.015952000000000001 s. check vertex 2574***** optimize via Newton (infeasible start version) with 72 unknowns and 58 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.74348469102093995, r_dual = ||g+A^T nue||^2 = 0.0065657310289361443) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.77653388630400688, t = 1 (tmax=1), res_primal = 2.6201118684959848e-31, res_dual = 0.43528830837493315, regularization = 0, KKT residual^2 = 1.0526386170380316e-31 iter: 1, feasible, f(x) = 0.72103720204669597, t = 1 (tmax=1), res_primal = 1.9133870870690561e-31, res_dual = 0.0038868359898462587, regularization = 0, eps = [Newton decrement] = 0.10298175970028603, KKT residual^2 = 1.2908656455351928e-32 iter: 2, feasible, f(x) = 0.72018648053085499, t = 1 (tmax=1), res_primal = 3.1302490612591417e-31, res_dual = 3.3788807922957565e-06, regularization = 0, eps = [Newton decrement] = 0.0016657346351810721, KKT residual^2 = 1.2455207243552901e-34 iter: 3, feasible, f(x) = 0.72018542509361239, t = 1 (tmax=1), res_primal = 2.5811652463760568e-31, res_dual = 1.1730417065579427e-08, regularization = 0, eps = [Newton decrement] = 2.0192600491408265e-06, KKT residual^2 = 2.8183943474364205e-37 iter: 4, feasible, f(x) = 0.72018542244286243, t = 1 (tmax=1), res_primal = 1.4972629455333207e-31, res_dual = 3.5807850287474463e-11, regularization = 0, eps = [Newton decrement] = 5.0241725027758556e-09, KKT residual^2 = 8.9053557446581471e-40 solve_infeasible_start took 0.0079550000000000003 s. check vertex 2575***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.89263629802606248, r_dual = ||g+A^T nue||^2 = 0.0015835634688050127) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.51931597283830766, t = 1 (tmax=1), res_primal = 4.3879700127029224e-31, res_dual = 0.16887535081131042, regularization = 0, KKT residual^2 = 5.3676811589622047e-32 iter: 1, feasible, f(x) = 0.4801952201241998, t = 1 (tmax=1), res_primal = 5.7269496831250486e-31, res_dual = 0.0037382982315212225, regularization = 0, eps = [Newton decrement] = 0.071531153216208565, KKT residual^2 = 4.525074020558982e-33 iter: 2, feasible, f(x) = 0.47912331254019702, t = 1 (tmax=1), res_primal = 7.6249733096913468e-31, res_dual = 8.1653808180576256e-06, regularization = 0, eps = [Newton decrement] = 0.0020622862310749543, KKT residual^2 = 1.9730378998873855e-34 iter: 3, feasible, f(x) = 0.47911974145161429, t = 1 (tmax=1), res_primal = 6.9978299269058743e-31, res_dual = 9.6307943612076605e-09, regularization = 0, eps = [Newton decrement] = 6.9254738280047378e-06, KKT residual^2 = 5.0097447488251128e-37 iter: 4, feasible, f(x) = 0.47911973543282982, t = 1 (tmax=1), res_primal = 7.7841139373806939e-31, res_dual = 3.7679360314949307e-11, regularization = 0, eps = [Newton decrement] = 1.1369181149140819e-08, KKT residual^2 = 1.8431595340990661e-39 solve_infeasible_start took 0.017061 s. check vertex 2576***** optimize via Newton (infeasible start version) with 216 unknowns and 178 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.75205620294414344, r_dual = ||g+A^T nue||^2 = 0.0009829894648971378) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.36805961150010846, t = 1 (tmax=1), res_primal = 9.9318309358132024e-31, res_dual = 0.05079779673846628, regularization = 0, KKT residual^2 = 5.081974208394201e-32 iter: 1, feasible, f(x) = 0.34927333744782635, t = 1 (tmax=1), res_primal = 8.0322656973341213e-31, res_dual = 0.00038880411012892543, regularization = 0, eps = [Newton decrement] = 0.035387067307905293, KKT residual^2 = 4.1298241917291189e-33 iter: 2, feasible, f(x) = 0.34907495088530865, t = 1 (tmax=1), res_primal = 8.9090146919712469e-31, res_dual = 3.7920481228905274e-07, regularization = 0, eps = [Newton decrement] = 0.00038480721019397012, KKT residual^2 = 2.6209082534339187e-35 iter: 3, feasible, f(x) = 0.34907455731900838, t = 1 (tmax=1), res_primal = 9.9605447505377486e-31, res_dual = 1.2784399617149144e-09, regularization = 0, eps = [Newton decrement] = 7.4888136319785164e-07, KKT residual^2 = 1.4782836413125066e-37 solve_infeasible_start took 0.017121999999999998 s. check vertex 2577***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.72104989813603149, r_dual = ||g+A^T nue||^2 = 0.0017088193585482769) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.50417676812832712, t = 1 (tmax=1), res_primal = 3.1307921895997674e-31, res_dual = 0.12422377640860816, regularization = 0, KKT residual^2 = 5.9263841638140259e-32 iter: 1, feasible, f(x) = 0.47497905318510164, t = 1 (tmax=1), res_primal = 5.1331652921240326e-31, res_dual = 0.0008747907060064875, regularization = 0, eps = [Newton decrement] = 0.05470520399629257, KKT residual^2 = 5.4140680590498395e-33 iter: 2, feasible, f(x) = 0.47464100548661337, t = 1 (tmax=1), res_primal = 3.4629385505393253e-31, res_dual = 8.6719894394414338e-07, regularization = 0, eps = [Newton decrement] = 0.00065941812860712868, KKT residual^2 = 3.5679362134793437e-35 iter: 3, feasible, f(x) = 0.47464049795124674, t = 1 (tmax=1), res_primal = 4.9790968012251206e-31, res_dual = 3.0128157620743412e-09, regularization = 0, eps = [Newton decrement] = 9.6817203832223579e-07, KKT residual^2 = 1.17046865719784e-37 solve_infeasible_start took 0.0085720000000000015 s. check vertex 2580***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.8932559762081721, r_dual = ||g+A^T nue||^2 = 0.0051309079357258845) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.69608723749089907, t = 1 (tmax=1), res_primal = 4.2575840589862215e-31, res_dual = 0.26217342909061897, regularization = 0, KKT residual^2 = 8.6683929445777043e-32 iter: 1, feasible, f(x) = 0.65142910249778385, t = 1 (tmax=1), res_primal = 4.2536609910373793e-31, res_dual = 0.0029607702957882738, regularization = 0, eps = [Newton decrement] = 0.083209684101218762, KKT residual^2 = 9.0051763246064465e-33 iter: 2, feasible, f(x) = 0.6507452005823039, t = 1 (tmax=1), res_primal = 3.2246191084667875e-31, res_dual = 2.091966116346901e-06, regularization = 0, eps = [Newton decrement] = 0.0013438448918298227, KKT residual^2 = 8.6787129567497372e-35 iter: 3, feasible, f(x) = 0.65074459186735845, t = 1 (tmax=1), res_primal = 3.9937647930707311e-31, res_dual = 1.5661851157065415e-09, regularization = 0, eps = [Newton decrement] = 1.1950115686833125e-06, KKT residual^2 = 1.0885583375045057e-37 iter: 4, feasible, f(x) = 0.65074459133687834, t = 1 (tmax=1), res_primal = 4.0171805249109832e-31, res_dual = 7.2005100348671075e-12, regularization = 0, eps = [Newton decrement] = 9.977016893245525e-10, KKT residual^2 = 2.1748741896429793e-40 solve_infeasible_start took 0.012339000000000001 s. check vertex 2582***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.8805853912660927, r_dual = ||g+A^T nue||^2 = 0.0021831651291314776) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.4713409220905066, t = 1 (tmax=1), res_primal = 5.7440796645281869e-31, res_dual = 0.091475350436030015, regularization = 0, KKT residual^2 = 7.5550019842160293e-32 iter: 1, feasible, f(x) = 0.44737014310501888, t = 1 (tmax=1), res_primal = 8.4133178478474307e-31, res_dual = 0.00048131184829304356, regularization = 0, eps = [Newton decrement] = 0.045424827108573554, KKT residual^2 = 5.1760880091932626e-33 iter: 2, feasible, f(x) = 0.44718427263161165, t = 1 (tmax=1), res_primal = 6.3815317071302914e-31, res_dual = 2.2143086293683056e-07, regularization = 0, eps = [Newton decrement] = 0.00036579865393897727, KKT residual^2 = 2.6442476837935287e-35 iter: 3, feasible, f(x) = 0.44718411710426786, t = 1 (tmax=1), res_primal = 6.8483125793391849e-31, res_dual = 6.5315340492952859e-10, regularization = 0, eps = [Newton decrement] = 2.9652719578759337e-07, KKT residual^2 = 3.8680914189827869e-38 solve_infeasible_start took 0.012617000000000001 s. check vertex 2585***** optimize via Newton (infeasible start version) with 72 unknowns and 58 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.80796864550788527, r_dual = ||g+A^T nue||^2 = 0.0062865301539753501) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.85271212600311785, t = 1 (tmax=1), res_primal = 2.871624572702603e-31, res_dual = 0.46249574936389304, regularization = 0, KKT residual^2 = 9.4536478554425082e-32 iter: 1, feasible, f(x) = 0.78165234469500322, t = 1 (tmax=1), res_primal = 2.5146383207760015e-31, res_dual = 0.0092024565388078884, regularization = 0, eps = [Newton decrement] = 0.13001129345183354, KKT residual^2 = 7.00185693715634e-33 iter: 2, feasible, f(x) = 0.77979500356510933, t = 1 (tmax=1), res_primal = 2.5395135810061068e-31, res_dual = 1.4412005266239341e-05, regularization = 0, eps = [Newton decrement] = 0.0036232204612136922, KKT residual^2 = 5.192503500800477e-34 iter: 3, feasible, f(x) = 0.77979185175781485, t = 1 (tmax=1), res_primal = 2.3283343572859177e-31, res_dual = 2.5558238604523642e-09, regularization = 0, eps = [Newton decrement] = 6.2631090710790229e-06, KKT residual^2 = 1.0358539554669692e-36 iter: 4, feasible, f(x) = 0.77979185106254179, t = 1 (tmax=1), res_primal = 1.7462914849537861e-31, res_dual = 1.1008172636615794e-11, regularization = 0, eps = [Newton decrement] = 1.31497202936916e-09, KKT residual^2 = 2.9800163505316989e-40 solve_infeasible_start took 0.0086189999999999999 s. check vertex 2590***** optimize via Newton (infeasible start version) with 198 unknowns and 163 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.97706632200296151, r_dual = ||g+A^T nue||^2 = 0.00057798994403568263) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.4155963994760527, t = 1 (tmax=1), res_primal = 7.9826088036788596e-31, res_dual = 0.043781080322891422, regularization = 0, KKT residual^2 = 5.1159268836901771e-32 iter: 1, feasible, f(x) = 0.39223849903458025, t = 1 (tmax=1), res_primal = 7.7132368140616604e-31, res_dual = 0.0004842609913866024, regularization = 0, eps = [Newton decrement] = 0.043924253887459706, KKT residual^2 = 3.9681595169963251e-33 iter: 2, feasible, f(x) = 0.3919548063202461, t = 1 (tmax=1), res_primal = 8.2920894198687081e-31, res_dual = 4.8199318424364368e-07, regularization = 0, eps = [Newton decrement] = 0.00055582254136369094, KKT residual^2 = 2.5234741854243943e-35 iter: 3, feasible, f(x) = 0.39195441538938403, t = 1 (tmax=1), res_primal = 9.2764863284163505e-31, res_dual = 2.4406182972444551e-09, regularization = 0, eps = [Newton decrement] = 7.396764976839041e-07, KKT residual^2 = 8.0261981696387494e-38 solve_infeasible_start took 0.016007999999999998 s. check vertex 2592***** optimize via Newton (infeasible start version) with 216 unknowns and 178 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.79581867309208276, r_dual = ||g+A^T nue||^2 = 0.0012674628041159394) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.41562978882933127, t = 1 (tmax=1), res_primal = 9.1920992839002497e-31, res_dual = 0.042107784156401831, regularization = 0, KKT residual^2 = 5.0921697821723511e-32 iter: 1, feasible, f(x) = 0.39658215846766232, t = 1 (tmax=1), res_primal = 8.3974181183504812e-31, res_dual = 0.00015884667783151176, regularization = 0, eps = [Newton decrement] = 0.036409068675098896, KKT residual^2 = 2.3660910362063218e-33 iter: 2, feasible, f(x) = 0.39648250759225862, t = 1 (tmax=1), res_primal = 8.2071913828179199e-31, res_dual = 1.3121702311114703e-08, regularization = 0, eps = [Newton decrement] = 0.00019831280867431346, KKT residual^2 = 1.1775714337021695e-35 iter: 3, feasible, f(x) = 0.3964824972495038, t = 1 (tmax=1), res_primal = 7.8146163360770594e-31, res_dual = 2.8881182029577228e-11, regularization = 0, eps = [Newton decrement] = 1.9945863546908466e-08, KKT residual^2 = 1.8299500700190384e-39 solve_infeasible_start took 0.033216000000000002 s. check vertex 2594***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.55886646908938276, r_dual = ||g+A^T nue||^2 = 0.0031876549411734715) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.69602183895499792, t = 1 (tmax=1), res_primal = 2.46786359672039e-31, res_dual = 0.25942538763858886, regularization = 0, KKT residual^2 = 1.2534988211506336e-31 iter: 1, feasible, f(x) = 0.64228515721761803, t = 1 (tmax=1), res_primal = 3.5896468813211086e-31, res_dual = 0.002753100832237964, regularization = 0, eps = [Newton decrement] = 0.099817268569174972, KKT residual^2 = 1.2439616999993936e-32 iter: 2, feasible, f(x) = 0.6414582852533196, t = 1 (tmax=1), res_primal = 2.9168875245679987e-31, res_dual = 1.5268604362296971e-06, regularization = 0, eps = [Newton decrement] = 0.001625891636148035, KKT residual^2 = 1.2359136976430212e-34 iter: 3, feasible, f(x) = 0.64145758227355876, t = 1 (tmax=1), res_primal = 2.9612588851631486e-31, res_dual = 3.2678665420871145e-09, regularization = 0, eps = [Newton decrement] = 1.3598447383499412e-06, KKT residual^2 = 1.2785089871050979e-37 iter: 4, feasible, f(x) = 0.64145758092272798, t = 1 (tmax=1), res_primal = 2.6148412697917254e-31, res_dual = 1.1087180779262015e-11, regularization = 0, eps = [Newton decrement] = 2.556563063842599e-09, KKT residual^2 = 3.6992745017494802e-40 solve_infeasible_start took 0.009330999999999999 s. check vertex 2595***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.82929416096951947, r_dual = ||g+A^T nue||^2 = 0.0010981503079377408) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.40940967481957485, t = 1 (tmax=1), res_primal = 5.2999724039041183e-31, res_dual = 0.05120411531298661, regularization = 0, KKT residual^2 = 6.4032582799082431e-32 iter: 1, feasible, f(x) = 0.38626445161578676, t = 1 (tmax=1), res_primal = 6.7034740827398033e-31, res_dual = 0.00049475185786175459, regularization = 0, eps = [Newton decrement] = 0.043385484764681445, KKT residual^2 = 3.2120216626323605e-33 iter: 2, feasible, f(x) = 0.38596370830476756, t = 1 (tmax=1), res_primal = 6.6967602520402952e-31, res_dual = 4.8630261445439883e-07, regularization = 0, eps = [Newton decrement] = 0.00058540688442174874, KKT residual^2 = 7.0984173887085598e-35 iter: 3, feasible, f(x) = 0.3859632340001361, t = 1 (tmax=1), res_primal = 5.7678603629798457e-31, res_dual = 1.0349758792007877e-09, regularization = 0, eps = [Newton decrement] = 9.166747679678947e-07, KKT residual^2 = 6.7562256198952631e-38 solve_infeasible_start took 0.013417 s. check vertex 2601***** optimize via Newton (infeasible start version) with 72 unknowns and 58 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.84347242376657117, r_dual = ||g+A^T nue||^2 = 0.0061468163446593343) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.71044629253085056, t = 1 (tmax=1), res_primal = 2.1652122298871137e-31, res_dual = 0.28204454271464785, regularization = 0, KKT residual^2 = 4.968063222706211e-32 iter: 1, feasible, f(x) = 0.66831002551353613, t = 1 (tmax=1), res_primal = 1.4683895968518368e-31, res_dual = 0.0019655084132397258, regularization = 0, eps = [Newton decrement] = 0.079098784984595244, KKT residual^2 = 1.041790727618584e-32 iter: 2, feasible, f(x) = 0.66785100289097232, t = 1 (tmax=1), res_primal = 1.6347760249852588e-31, res_dual = 3.3677829428448081e-07, regularization = 0, eps = [Newton decrement] = 0.00091041218793761966, KKT residual^2 = 1.0644693794029686e-34 iter: 3, feasible, f(x) = 0.66785091920400119, t = 1 (tmax=1), res_primal = 1.9700159187864923e-31, res_dual = 7.982267105199095e-11, regularization = 0, eps = [Newton decrement] = 1.6637385998488242e-07, KKT residual^2 = 2.5327732538424577e-38 solve_infeasible_start took 0.0067650000000000002 s. check vertex 2604***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.041687850674621, r_dual = ||g+A^T nue||^2 = 0.0032651409547366965) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.60913958317776806, t = 1 (tmax=1), res_primal = 4.0172290467054369e-31, res_dual = 0.18900312451737322, regularization = 0, KKT residual^2 = 6.7559909128278362e-32 iter: 1, feasible, f(x) = 0.57299525917047478, t = 1 (tmax=1), res_primal = 4.0585461968875751e-31, res_dual = 0.0016247836507662624, regularization = 0, eps = [Newton decrement] = 0.067558222925505285, KKT residual^2 = 1.6184226980054154e-32 iter: 2, feasible, f(x) = 0.57251765197125848, t = 1 (tmax=1), res_primal = 4.9066028696529714e-31, res_dual = 1.1379232797887984e-06, regularization = 0, eps = [Newton decrement] = 0.0009367551647474062, KKT residual^2 = 6.8390100997699567e-35 iter: 3, feasible, f(x) = 0.57251714669587039, t = 1 (tmax=1), res_primal = 3.074454479775901e-31, res_dual = 2.6060768592166565e-09, regularization = 0, eps = [Newton decrement] = 9.734108125482333e-07, KKT residual^2 = 1.1456512191835435e-37 solve_infeasible_start took 0.011108 s. check vertex 2605***** optimize via Newton (infeasible start version) with 117 unknowns and 94 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.70118065418464648, r_dual = ||g+A^T nue||^2 = 0.0016317850740545032) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.60577196274096201, t = 1 (tmax=1), res_primal = 4.1660484179209147e-31, res_dual = 0.17058117757325555, regularization = 0, KKT residual^2 = 4.5539738017027154e-32 iter: 1, feasible, f(x) = 0.55844282355106611, t = 1 (tmax=1), res_primal = 3.5501283084928843e-31, res_dual = 0.0020056012269788824, regularization = 0, eps = [Newton decrement] = 0.087621523971232823, KKT residual^2 = 8.1115754156627797e-33 iter: 2, feasible, f(x) = 0.55770589003840088, t = 1 (tmax=1), res_primal = 5.2430469512206885e-31, res_dual = 2.8189936997523645e-06, regularization = 0, eps = [Newton decrement] = 0.00143333081935966, KKT residual^2 = 9.1754280302227663e-35 iter: 3, feasible, f(x) = 0.55770422882336912, t = 1 (tmax=1), res_primal = 5.2787666478069176e-31, res_dual = 2.4296406981700848e-08, regularization = 0, eps = [Newton decrement] = 3.0736754850915052e-06, KKT residual^2 = 3.300448154016303e-37 iter: 4, feasible, f(x) = 0.55770421533840875, t = 1 (tmax=1), res_primal = 3.8241683338454559e-31, res_dual = 2.6907890614807308e-10, regularization = 0, eps = [Newton decrement] = 2.4424831532520288e-08, KKT residual^2 = 4.0140301624903868e-39 solve_infeasible_start took 0.011949 s. check vertex 2606***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.98702090453262969, r_dual = ||g+A^T nue||^2 = 0.0014784337406950536) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.49335955853725627, t = 1 (tmax=1), res_primal = 7.7478020698097449e-31, res_dual = 0.085073785167240387, regularization = 0, KKT residual^2 = 5.6950377465746525e-32 iter: 1, feasible, f(x) = 0.46504422649903898, t = 1 (tmax=1), res_primal = 8.2288840094285649e-31, res_dual = 0.00077753456864196021, regularization = 0, eps = [Newton decrement] = 0.052946328213255019, KKT residual^2 = 3.2556602067381513e-33 iter: 2, feasible, f(x) = 0.46468677282198961, t = 1 (tmax=1), res_primal = 8.3797132535572274e-31, res_dual = 8.1779998276874992e-07, regularization = 0, eps = [Newton decrement] = 0.00069773138230160307, KKT residual^2 = 5.6326658716308455e-35 iter: 3, feasible, f(x) = 0.46468624766072814, t = 1 (tmax=1), res_primal = 6.6375014291631705e-31, res_dual = 3.2632008127972938e-09, regularization = 0, eps = [Newton decrement] = 9.9835852398224592e-07, KKT residual^2 = 1.2155471232515036e-37 solve_infeasible_start took 0.023916 s. check vertex 2610***** optimize via Newton (infeasible start version) with 72 unknowns and 58 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.70304116979681797, r_dual = ||g+A^T nue||^2 = 0.0061870874736828637) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.99132754578337856, t = 1 (tmax=1), res_primal = 3.0984261430953761e-31, res_dual = 1.0314335599848032, regularization = 0, KKT residual^2 = 1.1244333034182522e-31 iter: 1, feasible, f(x) = 0.88954172452605462, t = 1 (tmax=1), res_primal = 3.0357570285933837e-31, res_dual = 0.015766500781422083, regularization = 0, eps = [Newton decrement] = 0.1849806649692752, KKT residual^2 = 2.441448637808235e-32 iter: 2, feasible, f(x) = 0.8868924014081998, t = 1 (tmax=1), res_primal = 2.5681528782920736e-31, res_dual = 2.1658859667492034e-05, regularization = 0, eps = [Newton decrement] = 0.0051537804019470036, KKT residual^2 = 4.7162427311837397e-34 iter: 3, feasible, f(x) = 0.88688689900425977, t = 1 (tmax=1), res_primal = 3.4262452643970654e-31, res_dual = 1.0353544711716364e-07, regularization = 0, eps = [Newton decrement] = 1.0440783590557094e-05, KKT residual^2 = 1.3430323186232359e-36 iter: 4, feasible, f(x) = 0.88688687332220328, t = 1 (tmax=1), res_primal = 2.2548483552707998e-31, res_dual = 7.4431205202115009e-10, regularization = 0, eps = [Newton decrement] = 4.7336958765799075e-08, KKT residual^2 = 8.3475268677054939e-39 solve_infeasible_start took 0.0082529999999999999 s. check vertex 2617***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.9800224573620786, r_dual = ||g+A^T nue||^2 = 0.0016804277739235931) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.50350955319325419, t = 1 (tmax=1), res_primal = 6.9659456943097297e-31, res_dual = 0.073397219408772918, regularization = 0, KKT residual^2 = 5.9957708630531158e-32 iter: 1, feasible, f(x) = 0.47571650421398642, t = 1 (tmax=1), res_primal = 6.2923195084574341e-31, res_dual = 0.0004470582257792279, regularization = 0, eps = [Newton decrement] = 0.052558071841921579, KKT residual^2 = 5.1405963069089526e-33 iter: 2, feasible, f(x) = 0.47548342810520178, t = 1 (tmax=1), res_primal = 5.9871709759476213e-31, res_dual = 1.754655371172862e-07, regularization = 0, eps = [Newton decrement] = 0.0004603214424845268, KKT residual^2 = 3.4792327717379444e-35 iter: 3, feasible, f(x) = 0.47548329709002773, t = 1 (tmax=1), res_primal = 6.7748485256708021e-31, res_dual = 6.3696570966986378e-10, regularization = 0, eps = [Newton decrement] = 2.5020006913955423e-07, KKT residual^2 = 3.425433749651766e-38 solve_infeasible_start took 0.019359000000000001 s. check vertex 2620***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.70635629810644074, r_dual = ||g+A^T nue||^2 = 0.0029914685605981726) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.48582022692215632, t = 1 (tmax=1), res_primal = 2.9176318513742797e-31, res_dual = 0.089984812926041505, regularization = 0, KKT residual^2 = 7.0065304547711076e-32 iter: 1, feasible, f(x) = 0.46453764112947493, t = 1 (tmax=1), res_primal = 5.0361595882600565e-31, res_dual = 0.00033963103102476426, regularization = 0, eps = [Newton decrement] = 0.040600276366747581, KKT residual^2 = 2.759129573615885e-33 iter: 2, feasible, f(x) = 0.46441402999041992, t = 1 (tmax=1), res_primal = 3.3207362903623242e-31, res_dual = 7.6024345945415838e-08, regularization = 0, eps = [Newton decrement] = 0.00024501784987163725, KKT residual^2 = 1.1853312819436628e-35 iter: 3, feasible, f(x) = 0.46441398864933303, t = 1 (tmax=1), res_primal = 3.3995357754922869e-31, res_dual = 1.4625190641026903e-10, regularization = 0, eps = [Newton decrement] = 7.9825614454139553e-08, KKT residual^2 = 1.0971944983383916e-38 solve_infeasible_start took 0.0087399999999999995 s. check vertex 2621***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.84255927040201262, r_dual = ||g+A^T nue||^2 = 0.0031166852249627335) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.69389367340161845, t = 1 (tmax=1), res_primal = 4.3936545362497107e-31, res_dual = 0.37829996724768195, regularization = 0, KKT residual^2 = 7.3284223282093999e-32 iter: 1, feasible, f(x) = 0.63922980045854849, t = 1 (tmax=1), res_primal = 3.6007417218453572e-31, res_dual = 0.0039054818366861615, regularization = 0, eps = [Newton decrement] = 0.10086590208937006, KKT residual^2 = 1.3955100891118802e-32 iter: 2, feasible, f(x) = 0.63822213954660956, t = 1 (tmax=1), res_primal = 2.8451665970546304e-31, res_dual = 5.2553639806575956e-06, regularization = 0, eps = [Newton decrement] = 0.0019612029182248555, KKT residual^2 = 1.275179254561454e-34 iter: 3, feasible, f(x) = 0.63822012027851438, t = 1 (tmax=1), res_primal = 4.4617902810460527e-31, res_dual = 2.567324005544208e-08, regularization = 0, eps = [Newton decrement] = 3.8267674166866082e-06, KKT residual^2 = 5.3682006255357966e-37 iter: 4, feasible, f(x) = 0.63822011129408152, t = 1 (tmax=1), res_primal = 4.7474236510898711e-31, res_dual = 1.7132636504574002e-10, regularization = 0, eps = [Newton decrement] = 1.6590376310641663e-08, KKT residual^2 = 2.5914316052631767e-39 solve_infeasible_start took 0.016805 s. check vertex 2622***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.50613975986737314, r_dual = ||g+A^T nue||^2 = 0.0023451440078496861) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.53634353598226059, t = 1 (tmax=1), res_primal = 1.550785497448576e-31, res_dual = 0.11891961845572487, regularization = 0, KKT residual^2 = 6.0682012352553626e-32 iter: 1, feasible, f(x) = 0.50814275134204479, t = 1 (tmax=1), res_primal = 3.3733993160365046e-31, res_dual = 0.00064117634218859552, regularization = 0, eps = [Newton decrement] = 0.053374491834498029, KKT residual^2 = 7.9160289302093932e-33 iter: 2, feasible, f(x) = 0.50791833639158401, t = 1 (tmax=1), res_primal = 5.7031913740408702e-31, res_dual = 2.2490781035805366e-07, regularization = 0, eps = [Newton decrement] = 0.00044358078086381421, KKT residual^2 = 2.7390921414386602e-35 iter: 3, feasible, f(x) = 0.50791821417599348, t = 1 (tmax=1), res_primal = 3.188499781037993e-31, res_dual = 7.5732212701691375e-10, regularization = 0, eps = [Newton decrement] = 2.3278367479881328e-07, KKT residual^2 = 3.883815308006747e-38 solve_infeasible_start took 0.007345 s. check vertex 2626***** optimize via Newton (infeasible start version) with 198 unknowns and 163 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.94813600939509435, r_dual = ||g+A^T nue||^2 = 0.00094083729596246496) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.47167906573046314, t = 1 (tmax=1), res_primal = 8.4640190562549861e-31, res_dual = 0.049224129433283172, regularization = 0, KKT residual^2 = 6.0804176364730496e-32 iter: 1, feasible, f(x) = 0.44803530608462061, t = 1 (tmax=1), res_primal = 1.0177711667531461e-30, res_dual = 0.00023156245522908952, regularization = 0, eps = [Newton decrement] = 0.044982795518919122, KKT residual^2 = 2.8303545256987526e-33 iter: 2, feasible, f(x) = 0.44788144507283839, t = 1 (tmax=1), res_primal = 1.0088453127972208e-30, res_dual = 7.861309681131257e-08, regularization = 0, eps = [Newton decrement] = 0.00030470263014725503, KKT residual^2 = 1.5312504417991118e-35 iter: 3, feasible, f(x) = 0.4478813226737397, t = 1 (tmax=1), res_primal = 8.3969506355858743e-31, res_dual = 1.1128377480349412e-09, regularization = 0, eps = [Newton decrement] = 2.1816371032366265e-07, KKT residual^2 = 3.1170267522261096e-38 solve_infeasible_start took 0.021452000000000002 s. check vertex 2631***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.63386128153115773, r_dual = ||g+A^T nue||^2 = 0.0030136188158548403) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.7073326783192011, t = 1 (tmax=1), res_primal = 3.9449111011176475e-31, res_dual = 0.27213613491457855, regularization = 0, KKT residual^2 = 1.1795074282031012e-31 iter: 1, feasible, f(x) = 0.65127213709648357, t = 1 (tmax=1), res_primal = 3.5928563964346903e-31, res_dual = 0.0042383587631307697, regularization = 0, eps = [Newton decrement] = 0.10331987948058016, KKT residual^2 = 1.1428436134867802e-32 iter: 2, feasible, f(x) = 0.65009564448094548, t = 1 (tmax=1), res_primal = 4.085866410721055e-31, res_dual = 5.4449117964774879e-06, regularization = 0, eps = [Newton decrement] = 0.0022964811186243143, KKT residual^2 = 1.4353153374285683e-34 iter: 3, feasible, f(x) = 0.65009373627527112, t = 1 (tmax=1), res_primal = 3.4404319672151837e-31, res_dual = 7.4612643216111933e-09, regularization = 0, eps = [Newton decrement] = 3.7238991047245581e-06, KKT residual^2 = 2.8123320018977497e-37 iter: 4, feasible, f(x) = 0.65009373268100012, t = 1 (tmax=1), res_primal = 4.9998830695377177e-31, res_dual = 5.9382520614385983e-11, regularization = 0, eps = [Newton decrement] = 6.5871450769987993e-09, KKT residual^2 = 1.5842439783527519e-39 solve_infeasible_start took 0.011005000000000001 s. check vertex 2636***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.4020123755971836, r_dual = ||g+A^T nue||^2 = 0.0011249609315225533) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.46660676854866445, t = 1 (tmax=1), res_primal = 8.3836981967951348e-31, res_dual = 0.051721597787975054, regularization = 0, KKT residual^2 = 8.9611290720768299e-32 iter: 1, feasible, f(x) = 0.44198486612068544, t = 1 (tmax=1), res_primal = 9.102018962597238e-31, res_dual = 0.00025425805414672415, regularization = 0, eps = [Newton decrement] = 0.046752116550324095, KKT residual^2 = 3.3821230540549341e-33 iter: 2, feasible, f(x) = 0.44181168396632575, t = 1 (tmax=1), res_primal = 8.2852092759433095e-31, res_dual = 8.3298560035400302e-08, regularization = 0, eps = [Newton decrement] = 0.00034316030343075612, KKT residual^2 = 2.394572072502066e-35 iter: 3, feasible, f(x) = 0.44181159915900325, t = 1 (tmax=1), res_primal = 6.3029717530621928e-31, res_dual = 8.3659370535182035e-10, regularization = 0, eps = [Newton decrement] = 1.5623630120626431e-07, KKT residual^2 = 2.5256174182977968e-38 solve_infeasible_start took 0.018461999999999999 s. check vertex 2638***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.81160900952414339, r_dual = ||g+A^T nue||^2 = 0.0011335307084113255) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.49353787505309865, t = 1 (tmax=1), res_primal = 4.7697769321210007e-31, res_dual = 0.13043348136334684, regularization = 0, KKT residual^2 = 8.4956445496808891e-32 iter: 1, feasible, f(x) = 0.45730552337427943, t = 1 (tmax=1), res_primal = 6.188398928579673e-31, res_dual = 0.0026962801117565447, regularization = 0, eps = [Newton decrement] = 0.066487702028221601, KKT residual^2 = 4.344071998569266e-33 iter: 2, feasible, f(x) = 0.45637297073361355, t = 1 (tmax=1), res_primal = 4.8735007099593178e-31, res_dual = 5.6687367912415253e-06, regularization = 0, eps = [Newton decrement] = 0.0018030378876935488, KKT residual^2 = 1.1171578230657807e-34 iter: 3, feasible, f(x) = 0.45637041165421854, t = 1 (tmax=1), res_primal = 7.1297543070042328e-31, res_dual = 4.2736591747961356e-09, regularization = 0, eps = [Newton decrement] = 5.0166777015717888e-06, KKT residual^2 = 2.9011854633497395e-37 iter: 4, feasible, f(x) = 0.4563704090315378, t = 1 (tmax=1), res_primal = 5.7039558722552569e-31, res_dual = 1.9290038882508618e-11, regularization = 0, eps = [Newton decrement] = 4.931646729567656e-09, KKT residual^2 = 9.3256554123841228e-40 solve_infeasible_start took 0.016402 s. check vertex 2639***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.87186358055175517, r_dual = ||g+A^T nue||^2 = 0.00081533574078961003) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.41184331619750447, t = 1 (tmax=1), res_primal = 9.0605552799156402e-31, res_dual = 0.069324774065199227, regularization = 0, KKT residual^2 = 5.0227427182323227e-32 iter: 1, feasible, f(x) = 0.38753480684474989, t = 1 (tmax=1), res_primal = 7.0852543082772688e-31, res_dual = 0.0011568061211372032, regularization = 0, eps = [Newton decrement] = 0.045160600809444409, KKT residual^2 = 2.885950000891228e-33 iter: 2, feasible, f(x) = 0.38705504468912311, t = 1 (tmax=1), res_primal = 9.1958917359797467e-31, res_dual = 1.6264563641623876e-06, regularization = 0, eps = [Newton decrement] = 0.00093306100395367702, KKT residual^2 = 5.5571382157786427e-35 iter: 3, feasible, f(x) = 0.38705416579085605, t = 1 (tmax=1), res_primal = 9.3347147781228315e-31, res_dual = 8.1576987910662907e-10, regularization = 0, eps = [Newton decrement] = 1.7297133322571939e-06, KKT residual^2 = 1.0039156900127138e-37 iter: 4, feasible, f(x) = 0.38705416525893621, t = 1 (tmax=1), res_primal = 1.3672723920926253e-30, res_dual = 2.2253515266982794e-12, regularization = 0, eps = [Newton decrement] = 1.0125472350759796e-09, KKT residual^2 = 2.1394077071468921e-40 solve_infeasible_start took 0.02129200000000003 s. check vertex 2642***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.75262785598216941, r_dual = ||g+A^T nue||^2 = 0.00086333743058287951) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.39593882608575109, t = 1 (tmax=1), res_primal = 9.4414604916298107e-31, res_dual = 0.036333529096923993, regularization = 0, KKT residual^2 = 8.7299879846748624e-32 iter: 1, feasible, f(x) = 0.37850024868302762, t = 1 (tmax=1), res_primal = 9.6667080828642615e-31, res_dual = 0.00013679268701261851, regularization = 0, eps = [Newton decrement] = 0.033327283989812183, KKT residual^2 = 2.1997799750073173e-33 iter: 2, feasible, f(x) = 0.37840660767097412, t = 1 (tmax=1), res_primal = 7.9468304459959281e-31, res_dual = 4.193242577811979e-08, regularization = 0, eps = [Newton decrement] = 0.00018542657016319754, KKT residual^2 = 1.292836711248822e-35 iter: 3, feasible, f(x) = 0.37840657226756491, t = 1 (tmax=1), res_primal = 7.911192679249621e-31, res_dual = 9.8224512205206338e-11, regularization = 0, eps = [Newton decrement] = 6.8112535471658587e-08, KKT residual^2 = 8.2280944644573078e-39 solve_infeasible_start took 0.022496000000000002 s. check vertex 2652***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.3192483393571248, r_dual = ||g+A^T nue||^2 = 0.0032641850413001722) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.6907919115407809, t = 1 (tmax=1), res_primal = 6.2502490285695886e-31, res_dual = 0.21281373888225172, regularization = 0, KKT residual^2 = 1.0743614053820081e-31 iter: 1, feasible, f(x) = 0.64349689736437765, t = 1 (tmax=1), res_primal = 5.2066501938178744e-31, res_dual = 0.0028352235476526528, regularization = 0, eps = [Newton decrement] = 0.087588784307205819, KKT residual^2 = 7.842078840251488e-33 iter: 2, feasible, f(x) = 0.64264187751934354, t = 1 (tmax=1), res_primal = 5.4708520964806387e-31, res_dual = 4.7677911222135439e-06, regularization = 0, eps = [Newton decrement] = 0.0016566173807957176, KKT residual^2 = 1.6135815547139103e-34 iter: 3, feasible, f(x) = 0.64263974555917036, t = 1 (tmax=1), res_primal = 5.255783088618887e-31, res_dual = 1.7365910105681564e-08, regularization = 0, eps = [Newton decrement] = 4.0751649781714159e-06, KKT residual^2 = 5.135245209560995e-37 iter: 4, feasible, f(x) = 0.64263973941437946, t = 1 (tmax=1), res_primal = 6.963510800305735e-31, res_dual = 7.9597217133506361e-11, regularization = 0, eps = [Newton decrement] = 1.152965721237643e-08, KKT residual^2 = 2.0609356483988164e-39 solve_infeasible_start took 0.022175 s. check vertex 2653***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.61650740914121893, r_dual = ||g+A^T nue||^2 = 0.0031563499592796441) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.5838939773873788, t = 1 (tmax=1), res_primal = 2.5567750913380357e-31, res_dual = 0.17676515493419265, regularization = 0, KKT residual^2 = 9.5256800257625963e-32 iter: 1, feasible, f(x) = 0.54530536111151406, t = 1 (tmax=1), res_primal = 2.972872364416236e-31, res_dual = 0.0017948442017610808, regularization = 0, eps = [Newton decrement] = 0.071686396006750183, KKT residual^2 = 5.1410315376014366e-33 iter: 2, feasible, f(x) = 0.54467436554286763, t = 1 (tmax=1), res_primal = 3.1592465012949912e-31, res_dual = 2.1979876984067872e-06, regularization = 0, eps = [Newton decrement] = 0.0012260607742279515, KKT residual^2 = 8.9331845361006783e-35 iter: 3, feasible, f(x) = 0.5446731681392899, t = 1 (tmax=1), res_primal = 3.0465197117866061e-31, res_dual = 5.9270258230946609e-09, regularization = 0, eps = [Newton decrement] = 2.3052307420912605e-06, KKT residual^2 = 1.9938699328141453e-37 iter: 4, feasible, f(x) = 0.54467316593057913, t = 1 (tmax=1), res_primal = 4.8162940516722847e-31, res_dual = 1.3719474137451102e-11, regularization = 0, eps = [Newton decrement] = 4.21775284627921e-09, KKT residual^2 = 9.4002199607107743e-40 solve_infeasible_start took 0.013409000000000001 s. check vertex 2657***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.70806276499120779, r_dual = ||g+A^T nue||^2 = 0.0024750686698938825) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.50272712110530504, t = 1 (tmax=1), res_primal = 5.9513928600552699e-31, res_dual = 0.097108250651527672, regularization = 0, KKT residual^2 = 6.4525352452322545e-32 iter: 1, feasible, f(x) = 0.47782227728713389, t = 1 (tmax=1), res_primal = 4.1410675448413879e-31, res_dual = 0.00051655962884339629, regularization = 0, eps = [Newton decrement] = 0.047242920251890592, KKT residual^2 = 6.1905135513714563e-33 iter: 2, feasible, f(x) = 0.47763382154526168, t = 1 (tmax=1), res_primal = 6.8656168368112134e-31, res_dual = 1.3879661640057351e-07, regularization = 0, eps = [Newton decrement] = 0.00037285357991183738, KKT residual^2 = 2.7206160029761795e-35 iter: 3, feasible, f(x) = 0.47763374768946582, t = 1 (tmax=1), res_primal = 4.717273726339277e-31, res_dual = 2.3052323227812707e-10, regularization = 0, eps = [Newton decrement] = 1.4321919530920226e-07, KKT residual^2 = 2.8900743615163351e-38 solve_infeasible_start took 0.018344000000000003 s. check vertex 2658***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.93285415324279208, r_dual = ||g+A^T nue||^2 = 0.0019496101573677131) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.50199743134297869, t = 1 (tmax=1), res_primal = 5.3671624672336026e-31, res_dual = 0.095394270363878569, regularization = 0, KKT residual^2 = 5.6604646326132555e-32 iter: 1, feasible, f(x) = 0.47501659833782117, t = 1 (tmax=1), res_primal = 4.8548184919219573e-31, res_dual = 0.00084935688071170149, regularization = 0, eps = [Newton decrement] = 0.05074611513642472, KKT residual^2 = 5.1824968086744255e-33 iter: 2, feasible, f(x) = 0.47471322022140161, t = 1 (tmax=1), res_primal = 6.2821371075857865e-31, res_dual = 4.7477555320857629e-07, regularization = 0, eps = [Newton decrement] = 0.00059627692413338578, KKT residual^2 = 4.9825743399550094e-35 iter: 3, feasible, f(x) = 0.47471297042932459, t = 1 (tmax=1), res_primal = 5.0782382006773881e-31, res_dual = 7.1632971572469709e-10, regularization = 0, eps = [Newton decrement] = 4.8552977291347469e-07, KKT residual^2 = 3.8630783636072423e-38 solve_infeasible_start took 0.012126 s. check vertex 2660***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.2084106138785367, r_dual = ||g+A^T nue||^2 = 0.0042264262674002202) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.58813296800312553, t = 1 (tmax=1), res_primal = 5.5410871211066336e-31, res_dual = 0.21962771746384993, regularization = 0, KKT residual^2 = 5.4150353826235843e-32 iter: 1, feasible, f(x) = 0.54931050704404716, t = 1 (tmax=1), res_primal = 3.8715481649871157e-31, res_dual = 0.0032431687698724495, regularization = 0, eps = [Newton decrement] = 0.071403428023912099, KKT residual^2 = 6.1264345377801154e-33 iter: 2, feasible, f(x) = 0.54845718415463285, t = 1 (tmax=1), res_primal = 2.7595921907091634e-31, res_dual = 5.1775554050826739e-06, regularization = 0, eps = [Newton decrement] = 0.0016488086321657957, KKT residual^2 = 1.1787245116763997e-34 iter: 3, feasible, f(x) = 0.54845503487748815, t = 1 (tmax=1), res_primal = 5.0455932012060182e-31, res_dual = 1.1248753019545836e-08, regularization = 0, eps = [Newton decrement] = 4.1465008573259019e-06, KKT residual^2 = 6.1263774840262323e-37 iter: 4, feasible, f(x) = 0.5484550305506235, t = 1 (tmax=1), res_primal = 3.6885128431873323e-31, res_dual = 5.2044354709301561e-11, regularization = 0, eps = [Newton decrement] = 8.1374003616603165e-09, KKT residual^2 = 1.7838522735916074e-39 solve_infeasible_start took 0.014323000000000001 s. check vertex 2664***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.51731710871774284, r_dual = ||g+A^T nue||^2 = 0.0032055441576824923) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.49858729052383921, t = 1 (tmax=1), res_primal = 2.9906990163075056e-31, res_dual = 0.0870836820782393, regularization = 0, KKT residual^2 = 7.168012200014229e-32 iter: 1, feasible, f(x) = 0.47458466012126754, t = 1 (tmax=1), res_primal = 4.5045161834385119e-31, res_dual = 0.00044262301987186631, regularization = 0, eps = [Newton decrement] = 0.045512383137309556, KKT residual^2 = 4.1838829297961929e-33 iter: 2, feasible, f(x) = 0.4743972701276139, t = 1 (tmax=1), res_primal = 4.6595736941650501e-31, res_dual = 1.6877202131991423e-07, regularization = 0, eps = [Newton decrement] = 0.00037002128363610641, KKT residual^2 = 2.511340254575188e-35 iter: 3, feasible, f(x) = 0.47439715961907003, t = 1 (tmax=1), res_primal = 4.4536266303650472e-31, res_dual = 5.4034043326492031e-10, regularization = 0, eps = [Newton decrement] = 2.1175769780537515e-07, KKT residual^2 = 2.2483124697916723e-38 solve_infeasible_start took 0.010458 s. check vertex 2668***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.56525593761214665, r_dual = ||g+A^T nue||^2 = 0.00082543690214214845) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.37648925045898551, t = 1 (tmax=1), res_primal = 5.9265274816698762e-31, res_dual = 0.044595764499503983, regularization = 0, KKT residual^2 = 3.9223105947656684e-32 iter: 1, feasible, f(x) = 0.36061296671341209, t = 1 (tmax=1), res_primal = 5.3652455891507675e-31, res_dual = 0.00018578765256701217, regularization = 0, eps = [Newton decrement] = 0.030362931340469728, KKT residual^2 = 4.7824905188685587e-33 iter: 2, feasible, f(x) = 0.36052540827915247, t = 1 (tmax=1), res_primal = 5.8809561445307488e-31, res_dual = 2.8001032956464827e-08, regularization = 0, eps = [Newton decrement] = 0.00017376390889657474, KKT residual^2 = 8.741071354376945e-36 iter: 3, feasible, f(x) = 0.36052539047448173, t = 1 (tmax=1), res_primal = 4.7845140306282337e-31, res_dual = 2.4209420967070927e-11, regularization = 0, eps = [Newton decrement] = 3.4910240620438138e-08, KKT residual^2 = 4.6599940643351269e-39 solve_infeasible_start took 0.010554000000000001 s. check vertex 2676***** optimize via Newton (infeasible start version) with 144 unknowns and 116 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.64787701043456802, r_dual = ||g+A^T nue||^2 = 0.00084981552198621745) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.36145936517623789, t = 1 (tmax=1), res_primal = 6.428294186355708e-31, res_dual = 0.035308638768332068, regularization = 0, KKT residual^2 = 4.3145175674757602e-32 iter: 1, feasible, f(x) = 0.34692421627791681, t = 1 (tmax=1), res_primal = 6.7316191924047315e-31, res_dual = 9.8828930302113065e-05, regularization = 0, eps = [Newton decrement] = 0.027941302968886049, KKT residual^2 = 2.2129839428646036e-33 iter: 2, feasible, f(x) = 0.34686673987283945, t = 1 (tmax=1), res_primal = 7.3090278446706122e-31, res_dual = 2.8409408837081886e-08, regularization = 0, eps = [Newton decrement] = 0.00011416516915923701, KKT residual^2 = 6.2810371163201928e-36 iter: 3, feasible, f(x) = 0.34686672223626092, t = 1 (tmax=1), res_primal = 6.7875731682702885e-31, res_dual = 1.1590573614961625e-10, regularization = 0, eps = [Newton decrement] = 3.340598201695788e-08, KKT residual^2 = 3.1967031484295924e-39 solve_infeasible_start took 0.012971999999999999 s. check vertex 2688***** optimize via Newton (infeasible start version) with 216 unknowns and 178 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.98644065004771408, r_dual = ||g+A^T nue||^2 = 0.00064739686506834699) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.44901438193347865, t = 1 (tmax=1), res_primal = 6.8270791535532255e-31, res_dual = 0.049525644278132344, regularization = 0, KKT residual^2 = 6.2661775105209686e-32 iter: 1, feasible, f(x) = 0.42453744960553152, t = 1 (tmax=1), res_primal = 9.6755494319223361e-31, res_dual = 0.00025730179185089777, regularization = 0, eps = [Newton decrement] = 0.046452952423871562, KKT residual^2 = 4.227044356336458e-33 iter: 2, feasible, f(x) = 0.42436169703646837, t = 1 (tmax=1), res_primal = 8.7097944892892929e-31, res_dual = 1.5675763645176096e-07, regularization = 0, eps = [Newton decrement] = 0.00034731711090655188, KKT residual^2 = 2.4935205614900976e-35 iter: 3, feasible, f(x) = 0.424361536713451, t = 1 (tmax=1), res_primal = 1.028685777111867e-30, res_dual = 2.0196996618243337e-09, regularization = 0, eps = [Newton decrement] = 2.8996827997652184e-07, KKT residual^2 = 5.5845630955069357e-38 solve_infeasible_start took 0.026336000000000002 s. check vertex 2707***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.0054722133776428, r_dual = ||g+A^T nue||^2 = 0.0016019603789078354) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.45022218085082499, t = 1 (tmax=1), res_primal = 6.6700255607300735e-31, res_dual = 0.072376613112487151, regularization = 0, KKT residual^2 = 3.699097951972974e-32 iter: 1, feasible, f(x) = 0.42596711789237363, t = 1 (tmax=1), res_primal = 7.6691890345362564e-31, res_dual = 0.00062201162572894653, regularization = 0, eps = [Newton decrement] = 0.04565888991347751, KKT residual^2 = 4.0579585354605666e-33 iter: 2, feasible, f(x) = 0.42569144527082181, t = 1 (tmax=1), res_primal = 4.5549026543583387e-31, res_dual = 4.6428256936053711e-07, regularization = 0, eps = [Newton decrement] = 0.00054028070444712235, KKT residual^2 = 2.7284983565884255e-35 iter: 3, feasible, f(x) = 0.42569114129124347, t = 1 (tmax=1), res_primal = 5.2064190664077157e-31, res_dual = 9.7868089512196626e-10, regularization = 0, eps = [Newton decrement] = 5.8753172580514344e-07, KKT residual^2 = 6.4568145965106557e-38 solve_infeasible_start took 0.012368000000000001 s. check vertex 2712***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.90276994193368487, r_dual = ||g+A^T nue||^2 = 0.0010893523114216231) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.42940977919500101, t = 1 (tmax=1), res_primal = 5.7729610155210404e-31, res_dual = 0.051855448690528418, regularization = 0, KKT residual^2 = 3.645707001081969e-32 iter: 1, feasible, f(x) = 0.40800193380660232, t = 1 (tmax=1), res_primal = 8.8213548874972624e-31, res_dual = 0.00026595785844323624, regularization = 0, eps = [Newton decrement] = 0.040654785585524732, KKT residual^2 = 3.4233659388988199e-33 iter: 2, feasible, f(x) = 0.40784280819569274, t = 1 (tmax=1), res_primal = 6.8845302113042437e-31, res_dual = 1.9945092729890904e-07, regularization = 0, eps = [Newton decrement] = 0.00031255716038848237, KKT residual^2 = 2.30572971893842e-35 iter: 3, feasible, f(x) = 0.40784261749862694, t = 1 (tmax=1), res_primal = 7.4834670250865214e-31, res_dual = 1.2745744534275795e-09, regularization = 0, eps = [Newton decrement] = 3.5630934658244633e-07, KKT residual^2 = 3.8878160075158683e-38 solve_infeasible_start took 0.017180000000000001 s. check vertex 2723***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.9963141836371141, r_dual = ||g+A^T nue||^2 = 0.00075622912424823917) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.41545899328783986, t = 1 (tmax=1), res_primal = 6.2986390623582567e-31, res_dual = 0.044678530575561134, regularization = 0, KKT residual^2 = 4.511858263316911e-32 iter: 1, feasible, f(x) = 0.39592494284051627, t = 1 (tmax=1), res_primal = 6.256755970050177e-31, res_dual = 0.00021250145810370799, regularization = 0, eps = [Newton decrement] = 0.037173176502307614, KKT residual^2 = 2.6296853700009885e-33 iter: 2, feasible, f(x) = 0.39579750302251876, t = 1 (tmax=1), res_primal = 8.3441394124515896e-31, res_dual = 9.4905922505883729e-08, regularization = 0, eps = [Newton decrement] = 0.00025135601862472378, KKT residual^2 = 1.9205085088928129e-35 iter: 3, feasible, f(x) = 0.39579741734121804, t = 1 (tmax=1), res_primal = 7.3626748838036547e-31, res_dual = 3.9591886757458991e-10, regularization = 0, eps = [Newton decrement] = 1.6246877318923819e-07, KKT residual^2 = 1.7962950089084298e-38 solve_infeasible_start took 0.016481000000000003 s. check vertex 2727***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.88096223899359405, r_dual = ||g+A^T nue||^2 = 0.002048288498478607) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.56913698586657357, t = 1 (tmax=1), res_primal = 3.8152982781834812e-31, res_dual = 0.10983512753687927, regularization = 0, KKT residual^2 = 6.1819467785560534e-32 iter: 1, feasible, f(x) = 0.5386042793488004, t = 1 (tmax=1), res_primal = 5.4571926737564123e-31, res_dual = 0.00061241246272314301, regularization = 0, eps = [Newton decrement] = 0.05767904245389887, KKT residual^2 = 5.9865541110413472e-33 iter: 2, feasible, f(x) = 0.53834496346958272, t = 1 (tmax=1), res_primal = 6.5255219254296959e-31, res_dual = 2.6998536210165963e-07, regularization = 0, eps = [Newton decrement] = 0.00051246007168596658, KKT residual^2 = 3.0227399747840364e-35 iter: 3, feasible, f(x) = 0.53834482374831283, t = 1 (tmax=1), res_primal = 6.5781234704481931e-31, res_dual = 9.4843547708003508e-10, regularization = 0, eps = [Newton decrement] = 2.6596360520962825e-07, KKT residual^2 = 3.6331198165014257e-38 solve_infeasible_start took 0.012858000000000001 s. check vertex 2728***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.0515006510550529, r_dual = ||g+A^T nue||^2 = 0.0033360265228620446) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.66884790848212849, t = 1 (tmax=1), res_primal = 5.9827238573826396e-31, res_dual = 0.28432397904128048, regularization = 0, KKT residual^2 = 6.6494386977149901e-32 iter: 1, feasible, f(x) = 0.61457563575479957, t = 1 (tmax=1), res_primal = 5.3249726205778e-31, res_dual = 0.0031014926249469227, regularization = 0, eps = [Newton decrement] = 0.10053089194623795, KKT residual^2 = 9.6486627537268337e-33 iter: 2, feasible, f(x) = 0.61369832825614101, t = 1 (tmax=1), res_primal = 7.991033464943388e-31, res_dual = 1.8712677425683645e-06, regularization = 0, eps = [Newton decrement] = 0.0017243336324765275, KKT residual^2 = 1.4725446651527603e-34 iter: 3, feasible, f(x) = 0.6136976069878034, t = 1 (tmax=1), res_primal = 6.2584814614378752e-31, res_dual = 4.1626104558140165e-09, regularization = 0, eps = [Newton decrement] = 1.3934310824865854e-06, KKT residual^2 = 2.1211364127963305e-37 iter: 4, feasible, f(x) = 0.6136976054105826, t = 1 (tmax=1), res_primal = 5.6836810436627609e-31, res_dual = 1.6531419636314811e-11, regularization = 0, eps = [Newton decrement] = 2.9654236330304148e-09, KKT residual^2 = 4.8987725882605741e-40 solve_infeasible_start took 0.01396 s. check vertex 2730***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.76355057311995322, r_dual = ||g+A^T nue||^2 = 0.0020946707399370238) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.47832677413062963, t = 1 (tmax=1), res_primal = 5.996253906343547e-31, res_dual = 0.079378862834566327, regularization = 0, KKT residual^2 = 5.5278805524529362e-32 iter: 1, feasible, f(x) = 0.45456745520235697, t = 1 (tmax=1), res_primal = 6.9414288789579689e-31, res_dual = 0.00046077661488104911, regularization = 0, eps = [Newton decrement] = 0.045029201306634278, KKT residual^2 = 3.6201676876169431e-33 iter: 2, feasible, f(x) = 0.45438085109364756, t = 1 (tmax=1), res_primal = 8.2543090124174266e-31, res_dual = 1.3776551164768148e-07, regularization = 0, eps = [Newton decrement] = 0.00036902892951580285, KKT residual^2 = 1.8380827588288159e-35 iter: 3, feasible, f(x) = 0.45438076380958026, t = 1 (tmax=1), res_primal = 9.2248605357131862e-31, res_dual = 4.6319523344506628e-10, regularization = 0, eps = [Newton decrement] = 1.6622050964600911e-07, KKT residual^2 = 1.8472481589462009e-38 solve_infeasible_start took 0.016324000000000002 s. check vertex 2738***** optimize via Newton (infeasible start version) with 72 unknowns and 58 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.47430469400831138, r_dual = ||g+A^T nue||^2 = 0.006759670003214477) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.71149162888683914, t = 1 (tmax=1), res_primal = 3.2654872795299694e-31, res_dual = 0.29922851080755664, regularization = 0, KKT residual^2 = 1.2358379621399415e-31 iter: 1, feasible, f(x) = 0.66846891319130619, t = 1 (tmax=1), res_primal = 3.2877232082922449e-31, res_dual = 0.0022699318305599292, regularization = 0, eps = [Newton decrement] = 0.080491234077431001, KKT residual^2 = 1.6345205780266645e-32 iter: 2, feasible, f(x) = 0.6679375775962314, t = 1 (tmax=1), res_primal = 1.7001169225330768e-31, res_dual = 1.2966527964976646e-06, regularization = 0, eps = [Newton decrement] = 0.0010453888714339861, KKT residual^2 = 6.6008721759046261e-35 iter: 3, feasible, f(x) = 0.66793716151270499, t = 1 (tmax=1), res_primal = 2.7165102402938097e-31, res_dual = 2.8343156697222908e-09, regularization = 0, eps = [Newton decrement] = 8.0440736832300831e-07, KKT residual^2 = 1.057324663651607e-37 solve_infeasible_start took 0.0066649999999999999 s. check vertex 2761***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.61015294895170791, r_dual = ||g+A^T nue||^2 = 0.0035700883114330988) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.521553393337575, t = 1 (tmax=1), res_primal = 3.3519153182322608e-31, res_dual = 0.12855858245498272, regularization = 0, KKT residual^2 = 5.6324270382160092e-32 iter: 1, feasible, f(x) = 0.49395678596464498, t = 1 (tmax=1), res_primal = 4.1967394108828574e-31, res_dual = 0.00083687329538171314, regularization = 0, eps = [Newton decrement] = 0.052035002651729084, KKT residual^2 = 4.7572886059805421e-33 iter: 2, feasible, f(x) = 0.49368535324599927, t = 1 (tmax=1), res_primal = 4.8881205526768855e-31, res_dual = 5.4766413176430618e-07, regularization = 0, eps = [Newton decrement] = 0.00053189363748652198, KKT residual^2 = 5.5422460930703795e-35 iter: 3, feasible, f(x) = 0.49368504732195767, t = 1 (tmax=1), res_primal = 2.2783039322345337e-31, res_dual = 1.3220861851810336e-09, regularization = 0, eps = [Newton decrement] = 5.8790144831669299e-07, KKT residual^2 = 8.3047130076334447e-38 solve_infeasible_start took 0.0076950000000000005 s. check vertex 2782***** optimize via Newton (infeasible start version) with 216 unknowns and 178 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.92824165005087389, r_dual = ||g+A^T nue||^2 = 0.001023685471506941) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.48808597603144177, t = 1 (tmax=1), res_primal = 1.099828846474102e-30, res_dual = 0.074703109344738866, regularization = 0, KKT residual^2 = 6.1443061606251122e-32 iter: 1, feasible, f(x) = 0.45555318127300948, t = 1 (tmax=1), res_primal = 9.7503007515035458e-31, res_dual = 0.00062710949604637936, regularization = 0, eps = [Newton decrement] = 0.061116128933860148, KKT residual^2 = 5.5360677927795075e-33 iter: 2, feasible, f(x) = 0.45519491759655356, t = 1 (tmax=1), res_primal = 1.078373844924269e-30, res_dual = 1.8469857013746858e-07, regularization = 0, eps = [Newton decrement] = 0.00070866584110946412, KKT residual^2 = 3.729079577212647e-35 iter: 3, feasible, f(x) = 0.45519477153655474, t = 1 (tmax=1), res_primal = 8.9924564782386168e-31, res_dual = 4.9150142133735462e-10, regularization = 0, eps = [Newton decrement] = 2.8143877050329448e-07, KKT residual^2 = 3.8408927951368525e-38 solve_infeasible_start took 0.017838999999999997 s. check vertex 2789***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.72735414075335647, r_dual = ||g+A^T nue||^2 = 0.00090322230077426462) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.41765634551692843, t = 1 (tmax=1), res_primal = 6.7948245327374491e-31, res_dual = 0.05689707437750656, regularization = 0, KKT residual^2 = 5.0800836249511293e-32 iter: 1, feasible, f(x) = 0.39773104898570433, t = 1 (tmax=1), res_primal = 5.2949757460948294e-31, res_dual = 0.00026595556823966941, regularization = 0, eps = [Newton decrement] = 0.03790382637408847, KKT residual^2 = 2.6171449011282651e-33 iter: 2, feasible, f(x) = 0.39759590347532392, t = 1 (tmax=1), res_primal = 6.8056199315693081e-31, res_dual = 7.1650811053460273e-08, regularization = 0, eps = [Newton decrement] = 0.00026760899965251454, KKT residual^2 = 1.7373265434461065e-35 iter: 3, feasible, f(x) = 0.3975958530282353, t = 1 (tmax=1), res_primal = 7.4192230399015763e-31, res_dual = 1.7299419442529302e-10, regularization = 0, eps = [Newton decrement] = 9.7061607720922926e-08, KKT residual^2 = 6.8110735840546102e-39 solve_infeasible_start took 0.015341 s. check vertex 2791***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.78374447414765624, r_dual = ||g+A^T nue||^2 = 0.001481820456023649) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.42780214236227676, t = 1 (tmax=1), res_primal = 4.2190984698967073e-31, res_dual = 0.14257010775179924, regularization = 0, KKT residual^2 = 7.4512277193513229e-32 iter: 1, feasible, f(x) = 0.39720192675542093, t = 1 (tmax=1), res_primal = 4.5338210417403397e-31, res_dual = 0.0021647903475190636, regularization = 0, eps = [Newton decrement] = 0.055751927099992382, KKT residual^2 = 4.716955148673561e-33 iter: 2, feasible, f(x) = 0.39642694213250673, t = 1 (tmax=1), res_primal = 6.4324089350764088e-31, res_dual = 3.7950184756251394e-06, regularization = 0, eps = [Newton decrement] = 0.0014902963472478931, KKT residual^2 = 9.9616964158866535e-35 iter: 3, feasible, f(x) = 0.3964247614863966, t = 1 (tmax=1), res_primal = 4.6945200093896787e-31, res_dual = 6.77321712760803e-09, regularization = 0, eps = [Newton decrement] = 4.2220851077800505e-06, KKT residual^2 = 4.6661500676739417e-37 iter: 4, feasible, f(x) = 0.39642475838851277, t = 1 (tmax=1), res_primal = 6.683497463621354e-31, res_dual = 1.3263657530387153e-11, regularization = 0, eps = [Newton decrement] = 5.9244153798125023e-09, KKT residual^2 = 2.9753459703210269e-39 solve_infeasible_start took 0.014057 s. check vertex 2792***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.85939684321406062, r_dual = ||g+A^T nue||^2 = 0.00084193917898052798) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.47442335870040786, t = 1 (tmax=1), res_primal = 4.8583216876861429e-31, res_dual = 0.070991872638859296, regularization = 0, KKT residual^2 = 7.9619199235748161e-32 iter: 1, feasible, f(x) = 0.44620921212113146, t = 1 (tmax=1), res_primal = 6.4865631851976261e-31, res_dual = 0.00074242319898747285, regularization = 0, eps = [Newton decrement] = 0.0529558691561548, KKT residual^2 = 3.5773942684178826e-33 iter: 2, feasible, f(x) = 0.44586735852133297, t = 1 (tmax=1), res_primal = 6.9095231944660197e-31, res_dual = 2.9238481602852873e-07, regularization = 0, eps = [Newton decrement] = 0.00067524556471249551, KKT residual^2 = 5.2601549206327835e-35 iter: 3, feasible, f(x) = 0.44586720738077912, t = 1 (tmax=1), res_primal = 6.7681277286094288e-31, res_dual = 1.7766697056999808e-10, regularization = 0, eps = [Newton decrement] = 2.9799839585358638e-07, KKT residual^2 = 2.111890091749583e-38 solve_infeasible_start took 0.017086 s. check vertex 2793***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.91380534622570186, r_dual = ||g+A^T nue||^2 = 0.00079555493460776376) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.40068986534095385, t = 1 (tmax=1), res_primal = 8.9115861877735499e-31, res_dual = 0.037650391140844355, regularization = 0, KKT residual^2 = 4.9757512203658729e-32 iter: 1, feasible, f(x) = 0.38181970803878162, t = 1 (tmax=1), res_primal = 7.6528732496542039e-31, res_dual = 0.00017050014698615572, regularization = 0, eps = [Newton decrement] = 0.035914461682356236, KKT residual^2 = 2.4119960876834197e-33 iter: 2, feasible, f(x) = 0.38169315967573242, t = 1 (tmax=1), res_primal = 6.614611056096558e-31, res_dual = 1.071317458230379e-07, regularization = 0, eps = [Newton decrement] = 0.00024985606812499074, KKT residual^2 = 1.2901199823808106e-35 iter: 3, feasible, f(x) = 0.38169306500904054, t = 1 (tmax=1), res_primal = 7.4176967641962842e-31, res_dual = 7.631751632205971e-10, regularization = 0, eps = [Newton decrement] = 1.7646729928929803e-07, KKT residual^2 = 2.8134979504651167e-38 solve_infeasible_start took 0.017568 s. check vertex 2796***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.1399326143660335, r_dual = ||g+A^T nue||^2 = 0.0011137705298057304) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.59764858733635395, t = 1 (tmax=1), res_primal = 7.5486092596959142e-31, res_dual = 0.12358655262211823, regularization = 0, KKT residual^2 = 6.1306115187625662e-32 iter: 1, feasible, f(x) = 0.55888341204864866, t = 1 (tmax=1), res_primal = 8.6634444092388859e-31, res_dual = 0.0010859774426360978, regularization = 0, eps = [Newton decrement] = 0.07228798043556306, KKT residual^2 = 5.8028389197158509e-33 iter: 2, feasible, f(x) = 0.55836654023686028, t = 1 (tmax=1), res_primal = 9.4316258934298687e-31, res_dual = 1.321450253287231e-06, regularization = 0, eps = [Newton decrement] = 0.0010069919624885685, KKT residual^2 = 8.0879038811609314e-35 iter: 3, feasible, f(x) = 0.55836556874510856, t = 1 (tmax=1), res_primal = 7.6638405645065302e-31, res_dual = 7.667373584772457e-09, regularization = 0, eps = [Newton decrement] = 1.8255992051211095e-06, KKT residual^2 = 2.1888960014681201e-37 iter: 4, feasible, f(x) = 0.55836556331406073, t = 1 (tmax=1), res_primal = 7.3342293611276248e-31, res_dual = 6.4158295876191276e-11, regularization = 0, eps = [Newton decrement] = 9.8681642536664992e-09, KKT residual^2 = 1.5498591129588705e-39 solve_infeasible_start took 0.022617000000000002 s. check vertex 2798***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.96780830681208418, r_dual = ||g+A^T nue||^2 = 0.0035885774294877508) using linear solver Umfpack iter: 0, infeasible, f(x) = 1.0349280538405481, t = 1 (tmax=1), res_primal = 4.0404873825127373e-31, res_dual = 1.0900120842589445, regularization = 0, KKT residual^2 = 1.0489572383461188e-31 iter: 1, feasible, f(x) = 0.90251507262529729, t = 1 (tmax=1), res_primal = 3.9159336741630928e-31, res_dual = 0.02862050019313564, regularization = 0, eps = [Newton decrement] = 0.23734398836867424, KKT residual^2 = 5.4320613280080188e-32 iter: 2, feasible, f(x) = 0.89764105307735509, t = 1 (tmax=1), res_primal = 4.1092611737996737e-31, res_dual = 5.3485469567745981e-05, regularization = 0, eps = [Newton decrement] = 0.0094577575863607627, KKT residual^2 = 1.3281092191722915e-33 iter: 3, feasible, f(x) = 0.89762951649271505, t = 1 (tmax=1), res_primal = 4.546763025899712e-31, res_dual = 8.9988493196577474e-08, regularization = 0, eps = [Newton decrement] = 2.2382146017301159e-05, KKT residual^2 = 2.1569367101288944e-36 iter: 4, feasible, f(x) = 0.89762946821331835, t = 1 (tmax=1), res_primal = 4.9148040323862777e-31, res_dual = 1.980519769752841e-09, regularization = 0, eps = [Newton decrement] = 8.3526780975420696e-08, KKT residual^2 = 1.358923231464316e-38 solve_infeasible_start took 0.011332999999999999 s. check vertex 2799***** optimize via Newton (infeasible start version) with 189 unknowns and 153 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.7385689783643179, r_dual = ||g+A^T nue||^2 = 0.00075207410835524105) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.36911351651094304, t = 1 (tmax=1), res_primal = 8.1883510926316969e-31, res_dual = 0.032021243828464573, regularization = 0, KKT residual^2 = 4.0706822312970123e-32 iter: 1, feasible, f(x) = 0.35333091234069225, t = 1 (tmax=1), res_primal = 6.0952351793148396e-31, res_dual = 0.00010944448372219915, regularization = 0, eps = [Newton decrement] = 0.030258951604825154, KKT residual^2 = 2.7083853532526077e-33 iter: 2, feasible, f(x) = 0.35325971636770681, t = 1 (tmax=1), res_primal = 7.4431888593723899e-31, res_dual = 2.502356539024756e-08, regularization = 0, eps = [Newton decrement] = 0.00014137821202032106, KKT residual^2 = 9.1289023059101912e-36 iter: 3, feasible, f(x) = 0.35325970066075468, t = 1 (tmax=1), res_primal = 8.7664354401663911e-31, res_dual = 4.9903522126520067e-11, regularization = 0, eps = [Newton decrement] = 3.0294508901186003e-08, KKT residual^2 = 3.3461815272367577e-39 solve_infeasible_start took 0.014188000000000001 s. check vertex 2800***** optimize via Newton (infeasible start version) with 126 unknowns and 102 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.62140966864615543, r_dual = ||g+A^T nue||^2 = 0.0010801125879336881) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.45990282070929711, t = 1 (tmax=1), res_primal = 4.3703893780161972e-31, res_dual = 0.091137526625633472, regularization = 0, KKT residual^2 = 5.7343897297822432e-32 iter: 1, feasible, f(x) = 0.43728546862167472, t = 1 (tmax=1), res_primal = 4.1828257082658785e-31, res_dual = 0.00034464113353054, regularization = 0, eps = [Newton decrement] = 0.043103831265993667, KKT residual^2 = 4.0459040556207776e-33 iter: 2, feasible, f(x) = 0.43715007224619051, t = 1 (tmax=1), res_primal = 7.0204584420438665e-31, res_dual = 5.206581215243558e-08, regularization = 0, eps = [Newton decrement] = 0.00026912413410959689, KKT residual^2 = 1.9876229316612849e-35 iter: 3, feasible, f(x) = 0.43715004825603082, t = 1 (tmax=1), res_primal = 5.3345705112809843e-31, res_dual = 1.553658844808813e-10, regularization = 0, eps = [Newton decrement] = 4.599412758644279e-08, KKT residual^2 = 7.1591987559789515e-39 solve_infeasible_start took 0.010313000000000001 s. check vertex 2802***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.0265617006380243, r_dual = ||g+A^T nue||^2 = 0.00093801301477294753) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.51695416257865712, t = 1 (tmax=1), res_primal = 7.8726203092678418e-31, res_dual = 0.083593713105721362, regularization = 0, KKT residual^2 = 6.7454195025337214e-32 iter: 1, feasible, f(x) = 0.48406940228541595, t = 1 (tmax=1), res_primal = 6.7364188346854223e-31, res_dual = 0.00090764007119386724, regularization = 0, eps = [Newton decrement] = 0.061420149021758526, KKT residual^2 = 5.6639685783892217e-33 iter: 2, feasible, f(x) = 0.48361031296150087, t = 1 (tmax=1), res_primal = 7.3252139204351191e-31, res_dual = 7.7705344153799936e-07, regularization = 0, eps = [Newton decrement] = 0.00089909639829597915, KKT residual^2 = 7.7257409569419457e-35 iter: 3, feasible, f(x) = 0.4836097269271622, t = 1 (tmax=1), res_primal = 7.0983118317939968e-31, res_dual = 3.0909260314329983e-09, regularization = 0, eps = [Newton decrement] = 1.118209949690832e-06, KKT residual^2 = 1.3352249302067052e-37 iter: 4, feasible, f(x) = 0.48360972479223241, t = 1 (tmax=1), res_primal = 7.2013908220694084e-31, res_dual = 2.1668843721174631e-11, regularization = 0, eps = [Newton decrement] = 3.9423534444506306e-09, KKT residual^2 = 6.725961122751753e-40 solve_infeasible_start took 0.022925000000000001 s. check vertex 2804***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.80581614764685761, r_dual = ||g+A^T nue||^2 = 0.0033307498716558916) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.54157039678417451, t = 1 (tmax=1), res_primal = 4.5759676215407504e-31, res_dual = 0.12515570833763887, regularization = 0, KKT residual^2 = 4.7000971101860737e-32 iter: 1, feasible, f(x) = 0.51021767947156338, t = 1 (tmax=1), res_primal = 5.0777445551277294e-31, res_dual = 0.00095303477838543842, regularization = 0, eps = [Newton decrement] = 0.059045044602821527, KKT residual^2 = 7.8533049397380706e-33 iter: 2, feasible, f(x) = 0.50990243952100955, t = 1 (tmax=1), res_primal = 4.4024087490534543e-31, res_dual = 2.4146891365535477e-07, regularization = 0, eps = [Newton decrement] = 0.00062428510073827886, KKT residual^2 = 3.1736436469771697e-35 iter: 3, feasible, f(x) = 0.50990234817433211, t = 1 (tmax=1), res_primal = 5.6378550892247242e-31, res_dual = 2.5772976289419078e-10, regularization = 0, eps = [Newton decrement] = 1.787202955859561e-07, KKT residual^2 = 1.8912440701181379e-38 solve_infeasible_start took 0.013484999999999999 s. check vertex 2805***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.87984277439692615, r_dual = ||g+A^T nue||^2 = 0.0024641527838180559) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.62736112997274884, t = 1 (tmax=1), res_primal = 4.3363524522849249e-31, res_dual = 0.2928700623598488, regularization = 0, KKT residual^2 = 8.0738251030363268e-32 iter: 1, feasible, f(x) = 0.57730687478284826, t = 1 (tmax=1), res_primal = 3.8080334838318527e-31, res_dual = 0.0074235447338902305, regularization = 0, eps = [Newton decrement] = 0.091017537678154806, KKT residual^2 = 9.1083407500911225e-33 iter: 2, feasible, f(x) = 0.57568383950839053, t = 1 (tmax=1), res_primal = 5.7553418020510667e-31, res_dual = 1.7983795307999311e-05, regularization = 0, eps = [Newton decrement] = 0.0031311897879961834, KKT residual^2 = 3.0706412740517868e-34 iter: 3, feasible, f(x) = 0.5756787371444787, t = 1 (tmax=1), res_primal = 2.8606340688087269e-31, res_dual = 8.5117004369391838e-09, regularization = 0, eps = [Newton decrement] = 1.0021274060180904e-05, KKT residual^2 = 5.1858735929759164e-37 iter: 4, feasible, f(x) = 0.57567873323544561, t = 1 (tmax=1), res_primal = 4.0079613457587107e-31, res_dual = 1.850553715246568e-11, regularization = 0, eps = [Newton decrement] = 7.5021871662104099e-09, KKT residual^2 = 9.7892636034398219e-40 solve_infeasible_start took 0.010921 s. check vertex 2810***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.95176894783477062, r_dual = ||g+A^T nue||^2 = 0.0021774677286259692) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.49693264546513616, t = 1 (tmax=1), res_primal = 5.8118071768068769e-31, res_dual = 0.094215105303980168, regularization = 0, KKT residual^2 = 4.5711749225766036e-32 iter: 1, feasible, f(x) = 0.47215974690514095, t = 1 (tmax=1), res_primal = 5.1358920931117076e-31, res_dual = 0.00067560611257509837, regularization = 0, eps = [Newton decrement] = 0.04680896621691541, KKT residual^2 = 2.6893575231263944e-33 iter: 2, feasible, f(x) = 0.47192394981490327, t = 1 (tmax=1), res_primal = 4.130713266578633e-31, res_dual = 1.8401572501146211e-07, regularization = 0, eps = [Newton decrement] = 0.00046664979468834895, KKT residual^2 = 3.6415565738454853e-35 iter: 3, feasible, f(x) = 0.47192387187558305, t = 1 (tmax=1), res_primal = 5.702645469261208e-31, res_dual = 6.7506911646693798e-11, regularization = 0, eps = [Newton decrement] = 1.5399018170906868e-07, KKT residual^2 = 1.0583797424556923e-38 solve_infeasible_start took 0.0091439999999999994 s. check vertex 2811***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.095492414242317, r_dual = ||g+A^T nue||^2 = 0.0025630029134321771) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.63257036178241677, t = 1 (tmax=1), res_primal = 4.8247964702362003e-31, res_dual = 0.20955575699694839, regularization = 0, KKT residual^2 = 6.0740408307313017e-32 iter: 1, feasible, f(x) = 0.58495212944447439, t = 1 (tmax=1), res_primal = 8.1535231608428674e-31, res_dual = 0.0023295919609904172, regularization = 0, eps = [Newton decrement] = 0.088069337559741362, KKT residual^2 = 9.5285984048127173e-33 iter: 2, feasible, f(x) = 0.5841069631473379, t = 1 (tmax=1), res_primal = 5.8826941355254099e-31, res_dual = 2.5197482394706165e-06, regularization = 0, eps = [Newton decrement] = 0.0016474406491169043, KKT residual^2 = 1.9507002009014583e-34 iter: 3, feasible, f(x) = 0.58410536578314143, t = 1 (tmax=1), res_primal = 5.7693695523028618e-31, res_dual = 1.3007303161528241e-08, regularization = 0, eps = [Newton decrement] = 3.0100061787370061e-06, KKT residual^2 = 3.0532898058230974e-37 iter: 4, feasible, f(x) = 0.5841053574759989, t = 1 (tmax=1), res_primal = 4.7329178343117404e-31, res_dual = 1.0033385069782863e-10, regularization = 0, eps = [Newton decrement] = 1.5295121135278859e-08, KKT residual^2 = 2.3735078303008614e-39 solve_infeasible_start took 0.018138999999999999 s. check vertex 2813***** optimize via Newton (infeasible start version) with 234 unknowns and 193 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.71098143352153653, r_dual = ||g+A^T nue||^2 = 0.0008477255113259754) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.34350543432889269, t = 1 (tmax=1), res_primal = 8.5727769685687804e-31, res_dual = 0.031862016744874065, regularization = 0, KKT residual^2 = 6.3503305054737848e-32 iter: 1, feasible, f(x) = 0.32979039708054442, t = 1 (tmax=1), res_primal = 1.0858432100475346e-30, res_dual = 0.00011234008629563116, regularization = 0, eps = [Newton decrement] = 0.026280012950192444, KKT residual^2 = 2.6841793633419161e-33 iter: 2, feasible, f(x) = 0.32972332826339407, t = 1 (tmax=1), res_primal = 9.3545335331945081e-31, res_dual = 2.7514433097330878e-08, regularization = 0, eps = [Newton decrement] = 0.00013266866458981955, KKT residual^2 = 8.7201386720198974e-36 iter: 3, feasible, f(x) = 0.32972329666809497, t = 1 (tmax=1), res_primal = 1.0168506898068835e-30, res_dual = 7.4935103764874201e-11, regularization = 0, eps = [Newton decrement] = 6.018809886564162e-08, KKT residual^2 = 8.961827923831826e-39 solve_infeasible_start took 0.016775999999999999 s. check vertex 2819***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.72907894747265811, r_dual = ||g+A^T nue||^2 = 0.0018086936427008696) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.47895480399077361, t = 1 (tmax=1), res_primal = 6.7282476529570652e-31, res_dual = 0.095869078472754471, regularization = 0, KKT residual^2 = 3.9892017512625414e-32 iter: 1, feasible, f(x) = 0.45090341571255199, t = 1 (tmax=1), res_primal = 7.6893938718495613e-31, res_dual = 0.00071724466237730678, regularization = 0, eps = [Newton decrement] = 0.052935472270705816, KKT residual^2 = 4.6279155678460819e-33 iter: 2, feasible, f(x) = 0.45064461025830327, t = 1 (tmax=1), res_primal = 7.1787597761354822e-31, res_dual = 2.578674960068968e-07, regularization = 0, eps = [Newton decrement] = 0.00051089547207614112, KKT residual^2 = 6.055081118514409e-35 iter: 3, feasible, f(x) = 0.45064447686353781, t = 1 (tmax=1), res_primal = 4.4345834834973634e-31, res_dual = 3.3486697931650737e-10, regularization = 0, eps = [Newton decrement] = 2.5898233599599084e-07, KKT residual^2 = 3.5380189051761271e-38 solve_infeasible_start took 0.012676999999999999 s. check vertex 2822***** optimize via Newton (infeasible start version) with 234 unknowns and 193 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.96206103941434584, r_dual = ||g+A^T nue||^2 = 0.0013174698910364607) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.5403870263590077, t = 1 (tmax=1), res_primal = 1.1178493405001164e-30, res_dual = 0.10751577591238629, regularization = 0, KKT residual^2 = 9.1339975892908863e-32 iter: 1, feasible, f(x) = 0.49662259093504102, t = 1 (tmax=1), res_primal = 8.8394748045881201e-31, res_dual = 0.0019623630832923877, regularization = 0, eps = [Newton decrement] = 0.080677809387730809, KKT residual^2 = 8.7395987472440123e-33 iter: 2, feasible, f(x) = 0.49569798828084, t = 1 (tmax=1), res_primal = 1.1282681139725809e-30, res_dual = 2.5871275272627947e-06, regularization = 0, eps = [Newton decrement] = 0.0018030570465418865, KKT residual^2 = 8.5810449292276954e-35 iter: 3, feasible, f(x) = 0.49569642922494211, t = 1 (tmax=1), res_primal = 1.0901751303547628e-30, res_dual = 3.4552826358146508e-09, regularization = 0, eps = [Newton decrement] = 3.0300441424864151e-06, KKT residual^2 = 1.7051101059921609e-37 iter: 4, feasible, f(x) = 0.49569642507242129, t = 1 (tmax=1), res_primal = 1.0506781905611945e-30, res_dual = 3.7324606457818164e-11, regularization = 0, eps = [Newton decrement] = 7.4963637449919664e-09, KKT residual^2 = 1.3624457084979743e-39 solve_infeasible_start took 0.026597000000000003 s. check vertex 2823***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.97890659644594047, r_dual = ||g+A^T nue||^2 = 0.0013718498353412589) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.51196645151603115, t = 1 (tmax=1), res_primal = 9.3686513352864967e-31, res_dual = 0.068686943426957164, regularization = 0, KKT residual^2 = 6.3409631889917923e-32 iter: 1, feasible, f(x) = 0.48175230792811918, t = 1 (tmax=1), res_primal = 7.8494717177669347e-31, res_dual = 0.00054433526727826534, regularization = 0, eps = [Newton decrement] = 0.056789989688002612, KKT residual^2 = 4.6647161337793793e-33 iter: 2, feasible, f(x) = 0.48141440497856697, t = 1 (tmax=1), res_primal = 7.0672079687238135e-31, res_dual = 5.0025710770627433e-07, regularization = 0, eps = [Newton decrement] = 0.00066342206528700377, KKT residual^2 = 3.8016887847634739e-35 iter: 3, feasible, f(x) = 0.48141390609739199, t = 1 (tmax=1), res_primal = 7.9947943281367474e-31, res_dual = 4.7925149950533892e-09, regularization = 0, eps = [Newton decrement] = 9.1634271577372475e-07, KKT residual^2 = 1.1150741376288046e-37 solve_infeasible_start took 0.021891999999999998 s. check vertex 2827***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.89271053822874324, r_dual = ||g+A^T nue||^2 = 0.0013918146603761718) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.49550197394551931, t = 1 (tmax=1), res_primal = 3.9366904710839918e-31, res_dual = 0.10737936257932398, regularization = 0, KKT residual^2 = 6.5361149391058006e-32 iter: 1, feasible, f(x) = 0.46691565422314113, t = 1 (tmax=1), res_primal = 4.8222534842750213e-31, res_dual = 0.0009725491709323314, regularization = 0, eps = [Newton decrement] = 0.053589645694842127, KKT residual^2 = 3.4144489642717765e-33 iter: 2, feasible, f(x) = 0.46656401193053659, t = 1 (tmax=1), res_primal = 7.8465576099448407e-31, res_dual = 5.9747674063740013e-07, regularization = 0, eps = [Newton decrement] = 0.00068930920358129324, KKT residual^2 = 5.7790990544506279e-35 iter: 3, feasible, f(x) = 0.46656366745481492, t = 1 (tmax=1), res_primal = 6.8909352060873975e-31, res_dual = 1.1447822898359894e-09, regularization = 0, eps = [Newton decrement] = 6.6750285061996748e-07, KKT residual^2 = 7.1814731853417319e-38 solve_infeasible_start took 0.011828 s. check vertex 2831***** optimize via Newton (infeasible start version) with 216 unknowns and 178 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.95275690675649638, r_dual = ||g+A^T nue||^2 = 0.0010753841054590091) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.48616254415023519, t = 1 (tmax=1), res_primal = 7.4253717776000022e-31, res_dual = 0.093051334126574514, regularization = 0, KKT residual^2 = 5.8716535390665566e-32 iter: 1, feasible, f(x) = 0.4550560585179062, t = 1 (tmax=1), res_primal = 9.44514408802471e-31, res_dual = 0.0011872740285038159, regularization = 0, eps = [Newton decrement] = 0.057872603919051545, KKT residual^2 = 5.7748450853690723e-33 iter: 2, feasible, f(x) = 0.45454733520833224, t = 1 (tmax=1), res_primal = 9.8674673798492304e-31, res_dual = 1.9741458615034617e-06, regularization = 0, eps = [Newton decrement] = 0.00097876075474354236, KKT residual^2 = 5.3810451529461768e-35 iter: 3, feasible, f(x) = 0.45454542478662252, t = 1 (tmax=1), res_primal = 1.1365071870006501e-30, res_dual = 1.444302995005084e-08, regularization = 0, eps = [Newton decrement] = 3.5331173237363735e-06, KKT residual^2 = 4.0448006532543143e-37 iter: 4, feasible, f(x) = 0.45454540660201526, t = 1 (tmax=1), res_primal = 9.6042862548428624e-31, res_dual = 2.3128736029735262e-10, regularization = 0, eps = [Newton decrement] = 3.2270685954229156e-08, KKT residual^2 = 5.9480877155194638e-39 solve_infeasible_start took 0.023668999999999999 s. check vertex 2832***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.135992832856322, r_dual = ||g+A^T nue||^2 = 0.0017940686334275942) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.49102893017930649, t = 1 (tmax=1), res_primal = 5.5781104915736336e-31, res_dual = 0.063764208439347381, regularization = 0, KKT residual^2 = 1.1347925807024773e-31 iter: 1, feasible, f(x) = 0.46741840202641238, t = 1 (tmax=1), res_primal = 8.5071415976639126e-31, res_dual = 0.00029180899777691411, regularization = 0, eps = [Newton decrement] = 0.044884927323520792, KKT residual^2 = 5.6454142116374208e-33 iter: 2, feasible, f(x) = 0.4672576108966337, t = 1 (tmax=1), res_primal = 9.8323312830680907e-31, res_dual = 1.7585062164206144e-07, regularization = 0, eps = [Newton decrement] = 0.00031707791972050838, KKT residual^2 = 2.3871805863988328e-35 iter: 3, feasible, f(x) = 0.46725744324506052, t = 1 (tmax=1), res_primal = 7.7238596826963199e-31, res_dual = 1.9039076625431401e-09, regularization = 0, eps = [Newton decrement] = 3.0698780304422623e-07, KKT residual^2 = 7.8125539173935302e-38 solve_infeasible_start took 0.014124000000000001 s. check vertex 2834***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.82634389208371006, r_dual = ||g+A^T nue||^2 = 0.0029154674729893514) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.67974539004104784, t = 1 (tmax=1), res_primal = 6.4871484350912982e-31, res_dual = 0.20047425086202178, regularization = 0, KKT residual^2 = 8.8627605034158704e-32 iter: 1, feasible, f(x) = 0.62754960256077741, t = 1 (tmax=1), res_primal = 6.1187905477819206e-31, res_dual = 0.003352114391092315, regularization = 0, eps = [Newton decrement] = 0.096144182430223907, KKT residual^2 = 9.8890930447188341e-33 iter: 2, feasible, f(x) = 0.62642267835337651, t = 1 (tmax=1), res_primal = 4.66276711654557e-31, res_dual = 3.9657017192593623e-06, regularization = 0, eps = [Newton decrement] = 0.0022039673856890521, KKT residual^2 = 1.708881422616892e-34 iter: 3, feasible, f(x) = 0.62642106364842132, t = 1 (tmax=1), res_primal = 7.4676216812701649e-31, res_dual = 6.5172348878583271e-09, regularization = 0, eps = [Newton decrement] = 3.1456289526310506e-06, KKT residual^2 = 2.1741491458336975e-37 iter: 4, feasible, f(x) = 0.62642105897807587, t = 1 (tmax=1), res_primal = 5.0313665582142807e-31, res_dual = 9.4109526502418334e-11, regularization = 0, eps = [Newton decrement] = 8.3611414268870078e-09, KKT residual^2 = 1.3459256723766723e-39 solve_infeasible_start took 0.019458000000000003 s. check vertex 2835***** optimize via Newton (infeasible start version) with 198 unknowns and 163 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.91109846790536209, r_dual = ||g+A^T nue||^2 = 0.0010360962862515429) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.45909045159430928, t = 1 (tmax=1), res_primal = 8.3226443299972451e-31, res_dual = 0.070308134459512645, regularization = 0, KKT residual^2 = 7.2308653638927196e-32 iter: 1, feasible, f(x) = 0.43204360507164818, t = 1 (tmax=1), res_primal = 6.9949219696495633e-31, res_dual = 0.00058743717666804858, regularization = 0, eps = [Newton decrement] = 0.050723106093161552, KKT residual^2 = 4.0189601364685268e-33 iter: 2, feasible, f(x) = 0.43173253053088378, t = 1 (tmax=1), res_primal = 6.9619132936763061e-31, res_dual = 4.8664547269512301e-07, regularization = 0, eps = [Newton decrement] = 0.00060661023897732138, KKT residual^2 = 3.7774210222247464e-35 iter: 3, feasible, f(x) = 0.43173203889273082, t = 1 (tmax=1), res_primal = 5.9974934103525531e-31, res_dual = 1.6736242312128051e-09, regularization = 0, eps = [Newton decrement] = 9.3472376475225212e-07, KKT residual^2 = 1.4492675613650669e-37 solve_infeasible_start took 0.022057000000000004 s. check vertex 2840***** optimize via Newton (infeasible start version) with 216 unknowns and 178 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.2767770648239218, r_dual = ||g+A^T nue||^2 = 0.00083462924013605387) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.47515349343609126, t = 1 (tmax=1), res_primal = 1.2396018701166572e-30, res_dual = 0.048364727856526436, regularization = 0, KKT residual^2 = 5.716496203158113e-32 iter: 1, feasible, f(x) = 0.4474094554503123, t = 1 (tmax=1), res_primal = 9.3977593498550891e-31, res_dual = 0.00038776854930306563, regularization = 0, eps = [Newton decrement] = 0.052258265556554773, KKT residual^2 = 3.1411021519131245e-33 iter: 2, feasible, f(x) = 0.44713049050176357, t = 1 (tmax=1), res_primal = 1.0335189667333286e-30, res_dual = 2.6720058292196906e-07, regularization = 0, eps = [Newton decrement] = 0.00054910617707752988, KKT residual^2 = 3.4099990968479044e-35 iter: 3, feasible, f(x) = 0.44713025650329585, t = 1 (tmax=1), res_primal = 9.2219211544669842e-31, res_dual = 1.0644644684556849e-09, regularization = 0, eps = [Newton decrement] = 4.458023928577778e-07, KKT residual^2 = 4.7367225185426672e-38 solve_infeasible_start took 0.022621000000000002 s. check vertex 2848***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.73420571006814228, r_dual = ||g+A^T nue||^2 = 0.0012568564405171401) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.4058036685955333, t = 1 (tmax=1), res_primal = 5.6195287174949838e-31, res_dual = 0.060185804301383442, regularization = 0, KKT residual^2 = 6.0473446566763196e-32 iter: 1, feasible, f(x) = 0.38383187755692166, t = 1 (tmax=1), res_primal = 6.8130165048065505e-31, res_dual = 0.00033343210810194552, regularization = 0, eps = [Newton decrement] = 0.041492540836760239, KKT residual^2 = 4.1961324259218394e-33 iter: 2, feasible, f(x) = 0.38364290745874163, t = 1 (tmax=1), res_primal = 7.846267452838081e-31, res_dual = 2.6822958574404252e-07, regularization = 0, eps = [Newton decrement] = 0.00036894995756972179, KKT residual^2 = 2.9368426689126201e-35 iter: 3, feasible, f(x) = 0.38364264186387748, t = 1 (tmax=1), res_primal = 6.2876861779061977e-31, res_dual = 8.6471579911019188e-10, regularization = 0, eps = [Newton decrement] = 5.0608687169337993e-07, KKT residual^2 = 5.3566902394272699e-38 solve_infeasible_start took 0.012753 s. check vertex 2851***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.3193615268287928, r_dual = ||g+A^T nue||^2 = 0.0020562937273322611) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.63170113439426712, t = 1 (tmax=1), res_primal = 4.7823622139488695e-31, res_dual = 0.21215569919957292, regularization = 0, KKT residual^2 = 9.7089086026595214e-32 iter: 1, feasible, f(x) = 0.58683799870806896, t = 1 (tmax=1), res_primal = 5.0751836871714601e-31, res_dual = 0.0021916436728920885, regularization = 0, eps = [Newton decrement] = 0.083426673007906668, KKT residual^2 = 1.1811926706562893e-32 iter: 2, feasible, f(x) = 0.58615917629737058, t = 1 (tmax=1), res_primal = 5.4399134537612169e-31, res_dual = 2.1715332411802389e-06, regularization = 0, eps = [Newton decrement] = 0.0013247368634991029, KKT residual^2 = 8.7483386842869149e-35 iter: 3, feasible, f(x) = 0.58615807876677584, t = 1 (tmax=1), res_primal = 3.9738630790066577e-31, res_dual = 7.2578189331922149e-09, regularization = 0, eps = [Newton decrement] = 2.0928940393200268e-06, KKT residual^2 = 3.2262032589900608e-37 iter: 4, feasible, f(x) = 0.58615807518506291, t = 1 (tmax=1), res_primal = 6.9495419040309392e-31, res_dual = 4.1819443774665092e-11, regularization = 0, eps = [Newton decrement] = 6.6558724444639052e-09, KKT residual^2 = 9.1054987379036924e-40 solve_infeasible_start took 0.019902999999999997 s. check vertex 2853***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.62472335626576425, r_dual = ||g+A^T nue||^2 = 0.0026517623447835487) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.56518284241292016, t = 1 (tmax=1), res_primal = 4.6763461056181943e-31, res_dual = 0.16072554376997492, regularization = 0, KKT residual^2 = 1.2239078940487604e-31 iter: 1, feasible, f(x) = 0.52862495236483154, t = 1 (tmax=1), res_primal = 3.7612813643931676e-31, res_dual = 0.001362003045982188, regularization = 0, eps = [Newton decrement] = 0.068404018691069754, KKT residual^2 = 4.4972871287943495e-33 iter: 2, feasible, f(x) = 0.52817413181191197, t = 1 (tmax=1), res_primal = 6.2257521071158089e-31, res_dual = 7.0282941097714402e-07, regularization = 0, eps = [Newton decrement] = 0.0008862303532637595, KKT residual^2 = 3.1859294879468752e-35 iter: 3, feasible, f(x) = 0.52817375875511419, t = 1 (tmax=1), res_primal = 5.1197506947762751e-31, res_dual = 1.3407816498758506e-09, regularization = 0, eps = [Newton decrement] = 7.2109472330001217e-07, KKT residual^2 = 8.0677438232631913e-38 solve_infeasible_start took 0.011242 s. check vertex 2855***** optimize via Newton (infeasible start version) with 135 unknowns and 109 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.77227685648418898, r_dual = ||g+A^T nue||^2 = 0.0011730599658871309) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.48411428577582355, t = 1 (tmax=1), res_primal = 4.1442197126203863e-31, res_dual = 0.076385373716895383, regularization = 0, KKT residual^2 = 4.3762445397628532e-32 iter: 1, feasible, f(x) = 0.46029666571326189, t = 1 (tmax=1), res_primal = 5.0863386418789066e-31, res_dual = 0.00034263645357992596, regularization = 0, eps = [Newton decrement] = 0.045300200977300253, KKT residual^2 = 5.2340908016113943e-33 iter: 2, feasible, f(x) = 0.46013986585467348, t = 1 (tmax=1), res_primal = 5.5637655636113465e-31, res_dual = 8.8197271582902474e-08, regularization = 0, eps = [Newton decrement] = 0.00031050983758059428, KKT residual^2 = 1.386808186082344e-35 iter: 3, feasible, f(x) = 0.46013980838753543, t = 1 (tmax=1), res_primal = 4.6461702863094673e-31, res_dual = 1.8208946488045579e-10, regularization = 0, eps = [Newton decrement] = 1.10932304782805e-07, KKT residual^2 = 9.200319372030115e-39 solve_infeasible_start took 0.010874999999999999 s. check vertex 2857***** optimize via Newton (infeasible start version) with 198 unknowns and 163 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.71634405400729639, r_dual = ||g+A^T nue||^2 = 0.0010510876966933474) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.39491531969607563, t = 1 (tmax=1), res_primal = 9.6043997091301964e-31, res_dual = 0.047852264994735542, regularization = 0, KKT residual^2 = 5.7013315851850563e-32 iter: 1, feasible, f(x) = 0.37716663601187439, t = 1 (tmax=1), res_primal = 8.8104471051849564e-31, res_dual = 0.00022848817030010239, regularization = 0, eps = [Newton decrement] = 0.033780147764900063, KKT residual^2 = 2.1253906365883831e-33 iter: 2, feasible, f(x) = 0.37704586624675107, t = 1 (tmax=1), res_primal = 1.2138206836255781e-30, res_dual = 5.6966552281423083e-08, regularization = 0, eps = [Newton decrement] = 0.00023911068302515023, KKT residual^2 = 1.2812075079877813e-35 iter: 3, feasible, f(x) = 0.37704582138018, t = 1 (tmax=1), res_primal = 8.4338504917054491e-31, res_dual = 1.2382827274893888e-10, regularization = 0, eps = [Newton decrement] = 8.6254916789105608e-08, KKT residual^2 = 1.3907250580761019e-38 solve_infeasible_start took 0.015220000000000001 s. check vertex 2861***** optimize via Newton (infeasible start version) with 234 unknowns and 193 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.90266472009960841, r_dual = ||g+A^T nue||^2 = 0.00064078421786780359) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.36650626512301498, t = 1 (tmax=1), res_primal = 9.8350606349928252e-31, res_dual = 0.02689275272348023, regularization = 0, KKT residual^2 = 5.0188112376954071e-32 iter: 1, feasible, f(x) = 0.35100833555832489, t = 1 (tmax=1), res_primal = 1.1342810987901062e-30, res_dual = 9.5669127975499808e-05, regularization = 0, eps = [Newton decrement] = 0.029672974452005084, KKT residual^2 = 1.8255189350626098e-33 iter: 2, feasible, f(x) = 0.35093225393064131, t = 1 (tmax=1), res_primal = 1.1703411340466071e-30, res_dual = 1.7096979151396013e-08, regularization = 0, eps = [Newton decrement] = 0.00015125211920896385, KKT residual^2 = 7.2727429435591891e-36 iter: 3, feasible, f(x) = 0.35093224068745088, t = 1 (tmax=1), res_primal = 9.8898698679315826e-31, res_dual = 5.6089043096763976e-11, regularization = 0, eps = [Newton decrement] = 2.5210377703602314e-08, KKT residual^2 = 2.6671482398265244e-39 solve_infeasible_start took 0.027726000000000001 s. check vertex 2867***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.96903539257161253, r_dual = ||g+A^T nue||^2 = 0.0010873916659140878) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.44850349958751601, t = 1 (tmax=1), res_primal = 5.3188470024979167e-31, res_dual = 0.051468116538406307, regularization = 0, KKT residual^2 = 5.7385164551340857e-32 iter: 1, feasible, f(x) = 0.4257590731134171, t = 1 (tmax=1), res_primal = 6.5052781928039603e-31, res_dual = 0.00031334885133990495, regularization = 0, eps = [Newton decrement] = 0.043101694476316024, KKT residual^2 = 4.9213170511564434e-33 iter: 2, feasible, f(x) = 0.42557227862412239, t = 1 (tmax=1), res_primal = 5.6450973252638549e-31, res_dual = 1.5319324640623508e-07, regularization = 0, eps = [Newton decrement] = 0.00036873811867375015, KKT residual^2 = 2.8175305171254396e-35 iter: 3, feasible, f(x) = 0.42557216650461493, t = 1 (tmax=1), res_primal = 8.6631626593728955e-31, res_dual = 6.2812145911205676e-10, regularization = 0, eps = [Newton decrement] = 2.1370948291010011e-07, KKT residual^2 = 2.8510241463767457e-38 solve_infeasible_start took 0.016378 s. check vertex 2869***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.87070939803024672, r_dual = ||g+A^T nue||^2 = 0.0026125449147559447) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.61972471975273469, t = 1 (tmax=1), res_primal = 7.1721643692479306e-31, res_dual = 0.28521758216408516, regularization = 0, KKT residual^2 = 1.0105876912903012e-31 iter: 1, feasible, f(x) = 0.56826779386317661, t = 1 (tmax=1), res_primal = 8.6205436734203277e-31, res_dual = 0.0062116436307933761, regularization = 0, eps = [Newton decrement] = 0.093262499097705356, KKT residual^2 = 1.676413706871431e-32 iter: 2, feasible, f(x) = 0.5665642468948815, t = 1 (tmax=1), res_primal = 5.5971298405770751e-31, res_dual = 1.2930560411159376e-05, regularization = 0, eps = [Newton decrement] = 0.0032776330562132349, KKT residual^2 = 4.1933105316814136e-34 iter: 3, feasible, f(x) = 0.56655825908619528, t = 1 (tmax=1), res_primal = 6.2986134149719773e-31, res_dual = 1.6745654852863322e-08, regularization = 0, eps = [Newton decrement] = 1.1680725936574316e-05, KKT residual^2 = 1.5104311231282271e-36 iter: 4, feasible, f(x) = 0.56655824951614819, t = 1 (tmax=1), res_primal = 6.8885873369228287e-31, res_dual = 9.6797689346643589e-11, regularization = 0, eps = [Newton decrement] = 1.782471169315315e-08, KKT residual^2 = 3.5882048705854651e-39 solve_infeasible_start took 0.013519 s. check vertex 2870***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.2339767253298328, r_dual = ||g+A^T nue||^2 = 0.0017277380505816523) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.54102868797822501, t = 1 (tmax=1), res_primal = 6.5038742614668461e-31, res_dual = 0.080173382036911919, regularization = 0, KKT residual^2 = 6.4632950068684219e-32 iter: 1, feasible, f(x) = 0.51021356363172476, t = 1 (tmax=1), res_primal = 7.5111892494768327e-31, res_dual = 0.00050586334053183261, regularization = 0, eps = [Newton decrement] = 0.058130956004667743, KKT residual^2 = 4.2853669165804229e-33 iter: 2, feasible, f(x) = 0.5099374313407341, t = 1 (tmax=1), res_primal = 7.0214567218203641e-31, res_dual = 2.357661298898828e-07, regularization = 0, eps = [Newton decrement] = 0.00054469351424356945, KKT residual^2 = 3.6869526335562552e-35 iter: 3, feasible, f(x) = 0.50993725715792848, t = 1 (tmax=1), res_primal = 7.5272280162445948e-31, res_dual = 7.4528128927355302e-10, regularization = 0, eps = [Newton decrement] = 3.3326801124659549e-07, KKT residual^2 = 3.5931943280870251e-38 solve_infeasible_start took 0.017431000000000002 s. check vertex 2875***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.80718320967513024, r_dual = ||g+A^T nue||^2 = 0.0014198540435185706) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.40395670465740374, t = 1 (tmax=1), res_primal = 6.0403436667638668e-31, res_dual = 0.061180799489065241, regularization = 0, KKT residual^2 = 3.9201461023660613e-32 iter: 1, feasible, f(x) = 0.38422865097017012, t = 1 (tmax=1), res_primal = 7.0642526977732142e-31, res_dual = 0.00039766561146580633, regularization = 0, eps = [Newton decrement] = 0.037329802962276427, KKT residual^2 = 2.8879451493093046e-33 iter: 2, feasible, f(x) = 0.38405263954564361, t = 1 (tmax=1), res_primal = 4.6541212078536932e-31, res_dual = 2.381177442271626e-07, regularization = 0, eps = [Newton decrement] = 0.00034456951363825549, KKT residual^2 = 1.6220419614025734e-35 iter: 3, feasible, f(x) = 0.38405245222628459, t = 1 (tmax=1), res_primal = 4.6647340341893069e-31, res_dual = 4.1001609671323707e-10, regularization = 0, eps = [Newton decrement] = 3.6209736342836252e-07, KKT residual^2 = 2.7789201791259018e-38 solve_infeasible_start took 0.012429000000000001 s. check vertex 2876***** optimize via Newton (infeasible start version) with 198 unknowns and 163 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.99752057303258079, r_dual = ||g+A^T nue||^2 = 0.00057047275876778486) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.35606071915587095, t = 1 (tmax=1), res_primal = 6.6241718611968653e-31, res_dual = 0.027256425556597935, regularization = 0, KKT residual^2 = 3.8986664506475628e-32 iter: 1, feasible, f(x) = 0.34097115821287632, t = 1 (tmax=1), res_primal = 8.1526025164167876e-31, res_dual = 8.9611866145375183e-05, regularization = 0, eps = [Newton decrement] = 0.028930879904075748, KKT residual^2 = 2.4488298135222075e-33 iter: 2, feasible, f(x) = 0.34090094046232688, t = 1 (tmax=1), res_primal = 8.1749595720257339e-31, res_dual = 4.677168377589088e-08, regularization = 0, eps = [Newton decrement] = 0.00013863503666051454, KKT residual^2 = 1.0585617243458562e-35 iter: 3, feasible, f(x) = 0.34090087752185344, t = 1 (tmax=1), res_primal = 1.0767137275575376e-30, res_dual = 4.3701740937162832e-10, regularization = 0, eps = [Newton decrement] = 1.1580757083636747e-07, KKT residual^2 = 1.8324105159083625e-38 solve_infeasible_start took 0.019663 s. check vertex 2877***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.75026466601475739, r_dual = ||g+A^T nue||^2 = 0.0010486282861192227) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.40886057961421141, t = 1 (tmax=1), res_primal = 5.9530387062506201e-31, res_dual = 0.05195240353055549, regularization = 0, KKT residual^2 = 4.481338258115215e-32 iter: 1, feasible, f(x) = 0.38992136809875316, t = 1 (tmax=1), res_primal = 6.7985197435766586e-31, res_dual = 0.00025176579661892657, regularization = 0, eps = [Newton decrement] = 0.036045410014546884, KKT residual^2 = 3.3631600205359664e-33 iter: 2, feasible, f(x) = 0.38979781743514075, t = 1 (tmax=1), res_primal = 5.5319987494358755e-31, res_dual = 9.0234241460553201e-08, regularization = 0, eps = [Newton decrement] = 0.00024397257238859503, KKT residual^2 = 1.271134264774786e-35 iter: 3, feasible, f(x) = 0.38979775064898553, t = 1 (tmax=1), res_primal = 5.0510649685128013e-31, res_dual = 2.1939132594588412e-10, regularization = 0, eps = [Newton decrement] = 1.2814856983197015e-07, KKT residual^2 = 1.478805081936744e-38 solve_infeasible_start took 0.01374599999999998 s. check vertex 2878***** optimize via Newton (infeasible start version) with 234 unknowns and 193 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.96253871639465971, r_dual = ||g+A^T nue||^2 = 0.00095602885868240842) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.398655572808718, t = 1 (tmax=1), res_primal = 1.0770291253115102e-30, res_dual = 0.057230156529444423, regularization = 0, KKT residual^2 = 5.901979824175937e-32 iter: 1, feasible, f(x) = 0.37840757047013257, t = 1 (tmax=1), res_primal = 1.074866035699391e-30, res_dual = 0.0004069469455846112, regularization = 0, eps = [Newton decrement] = 0.038088514911312522, KKT residual^2 = 4.8454788372515076e-33 iter: 2, feasible, f(x) = 0.37819145367613599, t = 1 (tmax=1), res_primal = 1.0061058273644505e-30, res_dual = 3.7219863801539122e-07, regularization = 0, eps = [Newton decrement] = 0.00041974187290014486, KKT residual^2 = 5.5085783094388768e-35 iter: 3, feasible, f(x) = 0.37819104143973148, t = 1 (tmax=1), res_primal = 9.5552084618553958e-31, res_dual = 1.4092782435466975e-09, regularization = 0, eps = [Newton decrement] = 7.8246864141870383e-07, KKT residual^2 = 1.1739563620322521e-37 solve_infeasible_start took 0.023280000000000002 s. check vertex 2881***** optimize via Newton (infeasible start version) with 234 unknowns and 193 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.87433363849014878, r_dual = ||g+A^T nue||^2 = 0.00042703349467456992) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.3654900280557265, t = 1 (tmax=1), res_primal = 1.2284140176825271e-30, res_dual = 0.026070428449903555, regularization = 0, KKT residual^2 = 5.0034271942588852e-32 iter: 1, feasible, f(x) = 0.34811021370987127, t = 1 (tmax=1), res_primal = 1.139815030566748e-30, res_dual = 0.00014932188900781582, regularization = 0, eps = [Newton decrement] = 0.033116085137562291, KKT residual^2 = 2.3362497890004978e-33 iter: 2, feasible, f(x) = 0.34799144968078566, t = 1 (tmax=1), res_primal = 1.1162102072879443e-30, res_dual = 7.5255634023482961e-08, regularization = 0, eps = [Newton decrement] = 0.00023437471404844386, KKT residual^2 = 1.0805156643424117e-35 iter: 3, feasible, f(x) = 0.34799135390180813, t = 1 (tmax=1), res_primal = 1.0415465554390202e-30, res_dual = 4.8663848717410182e-10, regularization = 0, eps = [Newton decrement] = 1.7925323050867453e-07, KKT residual^2 = 2.513079491133609e-38 solve_infeasible_start took 0.024460000000000003 s. check vertex 2888***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.97417352596086748, r_dual = ||g+A^T nue||^2 = 0.0015727389272597845) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.51219671327651994, t = 1 (tmax=1), res_primal = 8.3556170968367501e-31, res_dual = 0.079045428346551025, regularization = 0, KKT residual^2 = 6.3179146857439681e-32 iter: 1, feasible, f(x) = 0.48092439946073234, t = 1 (tmax=1), res_primal = 6.5261512197097375e-31, res_dual = 0.00068113203964607655, regularization = 0, eps = [Newton decrement] = 0.058704243751216051, KKT residual^2 = 4.7028324954394635e-33 iter: 2, feasible, f(x) = 0.480579150394704, t = 1 (tmax=1), res_primal = 7.1253040612005347e-31, res_dual = 3.1402574459106555e-07, regularization = 0, eps = [Newton decrement] = 0.00068078708561390038, KKT residual^2 = 3.8513941802576342e-35 iter: 3, feasible, f(x) = 0.48057889904688067, t = 1 (tmax=1), res_primal = 9.1322833729449529e-31, res_dual = 1.3761833847228519e-09, regularization = 0, eps = [Newton decrement] = 4.7438836693723873e-07, KKT residual^2 = 5.5306066038332717e-38 solve_infeasible_start took 0.013855000000000001 s. check vertex 2889***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.145733954847757, r_dual = ||g+A^T nue||^2 = 0.0017896677391690888) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.53513654177870196, t = 1 (tmax=1), res_primal = 5.1900957044364181e-31, res_dual = 0.085672041219633122, regularization = 0, KKT residual^2 = 7.7086443939404112e-32 iter: 1, feasible, f(x) = 0.50554200733340171, t = 1 (tmax=1), res_primal = 7.7911606442608829e-31, res_dual = 0.00052634412378539707, regularization = 0, eps = [Newton decrement] = 0.055878664812653099, KKT residual^2 = 4.1602473123014306e-33 iter: 2, feasible, f(x) = 0.50528324118652534, t = 1 (tmax=1), res_primal = 6.9517909563511012e-31, res_dual = 3.1692627708923218e-07, regularization = 0, eps = [Newton decrement] = 0.00050915960357419184, KKT residual^2 = 3.8510345259578793e-35 iter: 3, feasible, f(x) = 0.50528300822215555, t = 1 (tmax=1), res_primal = 6.5845927516484559e-31, res_dual = 1.2514259994623972e-09, regularization = 0, eps = [Newton decrement] = 4.4308411171998532e-07, KKT residual^2 = 4.7984767706284392e-38 solve_infeasible_start took 0.016695000000000002 s. check vertex 2891***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.80373220430342807, r_dual = ||g+A^T nue||^2 = 0.0037067091513315613) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.55654071310710262, t = 1 (tmax=1), res_primal = 3.5526600103968745e-31, res_dual = 0.12791696610948761, regularization = 0, KKT residual^2 = 5.1239945833374812e-32 iter: 1, feasible, f(x) = 0.52689222747951237, t = 1 (tmax=1), res_primal = 1.8910192533022526e-31, res_dual = 0.00084511955611852804, regularization = 0, eps = [Newton decrement] = 0.05596611920471882, KKT residual^2 = 4.8270257517170787e-33 iter: 2, feasible, f(x) = 0.52661452592565994, t = 1 (tmax=1), res_primal = 2.428132712509908e-31, res_dual = 1.5792875522142923e-07, regularization = 0, eps = [Newton decrement] = 0.00055080054862952153, KKT residual^2 = 4.8830407229275043e-35 iter: 3, feasible, f(x) = 0.52661447176353082, t = 1 (tmax=1), res_primal = 4.3235600833892564e-31, res_dual = 5.1429023084917769e-11, regularization = 0, eps = [Newton decrement] = 1.0742062848334588e-07, KKT residual^2 = 1.0855211415145308e-38 solve_infeasible_start took 0.0076530000000000001 s. check vertex 2897***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.78042697926278326, r_dual = ||g+A^T nue||^2 = 0.0029589110765202344) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.49853114520518393, t = 1 (tmax=1), res_primal = 3.2226098371744038e-31, res_dual = 0.099320961513035461, regularization = 0, KKT residual^2 = 5.8548801494382867e-32 iter: 1, feasible, f(x) = 0.47509073018449122, t = 1 (tmax=1), res_primal = 2.4560085716746207e-31, res_dual = 0.00045193800786547496, regularization = 0, eps = [Newton decrement] = 0.044558673295305759, KKT residual^2 = 2.3859225435593099e-33 iter: 2, feasible, f(x) = 0.47492977358140553, t = 1 (tmax=1), res_primal = 2.6755831346246412e-31, res_dual = 1.3389944020296067e-07, regularization = 0, eps = [Newton decrement] = 0.00031828686772623817, KKT residual^2 = 2.0045854193236875e-35 iter: 3, feasible, f(x) = 0.47492970161318093, t = 1 (tmax=1), res_primal = 3.7958105551009664e-31, res_dual = 2.4462601679257674e-10, regularization = 0, eps = [Newton decrement] = 1.3920385857172346e-07, KKT residual^2 = 1.5313756216077915e-38 solve_infeasible_start took 0.011533 s. check vertex 2898***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.72804330709287568, r_dual = ||g+A^T nue||^2 = 0.0019929581021729615) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.52827526125477831, t = 1 (tmax=1), res_primal = 5.5021570201487102e-31, res_dual = 0.11520114416957782, regularization = 0, KKT residual^2 = 7.6991899285113176e-32 iter: 1, feasible, f(x) = 0.49865759829769885, t = 1 (tmax=1), res_primal = 3.9099506003335644e-31, res_dual = 0.00088640096116462594, regularization = 0, eps = [Newton decrement] = 0.05569257870325485, KKT residual^2 = 5.3756498913443042e-33 iter: 2, feasible, f(x) = 0.49834893415635795, t = 1 (tmax=1), res_primal = 5.7372056915077887e-31, res_dual = 5.8651357185111629e-07, regularization = 0, eps = [Newton decrement] = 0.00060414851928561743, KKT residual^2 = 2.6711998092096619e-35 iter: 3, feasible, f(x) = 0.4983485518459424, t = 1 (tmax=1), res_primal = 5.7779083035908255e-31, res_dual = 1.6650689595712684e-09, regularization = 0, eps = [Newton decrement] = 7.314531259116009e-07, KKT residual^2 = 9.6286412067993357e-38 solve_infeasible_start took 0.010067 s. check vertex 2905***** optimize via Newton (infeasible start version) with 198 unknowns and 163 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.1425794768416337, r_dual = ||g+A^T nue||^2 = 0.0011450198576715865) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.57244534872610353, t = 1 (tmax=1), res_primal = 8.3832773405388523e-31, res_dual = 0.083053144269174692, regularization = 0, KKT residual^2 = 1.4710983984700221e-31 iter: 1, feasible, f(x) = 0.533479654070247, t = 1 (tmax=1), res_primal = 9.9659701607445916e-31, res_dual = 0.00081089592186944976, regularization = 0, eps = [Newton decrement] = 0.072564824009258427, KKT residual^2 = 6.6516052742779312e-33 iter: 2, feasible, f(x) = 0.53294060791135967, t = 1 (tmax=1), res_primal = 7.0787567153677375e-31, res_dual = 1.642876903723347e-06, regularization = 0, eps = [Newton decrement] = 0.0010427005863806549, KKT residual^2 = 8.3815325627975608e-35 iter: 3, feasible, f(x) = 0.5329387822649545, t = 1 (tmax=1), res_primal = 7.9199282832467708e-31, res_dual = 2.0832945138040335e-08, regularization = 0, eps = [Newton decrement] = 3.330211947682059e-06, KKT residual^2 = 5.2027147067486569e-37 iter: 4, feasible, f(x) = 0.53293876230700521, t = 1 (tmax=1), res_primal = 9.0824608529398936e-31, res_dual = 2.946487263179215e-10, regularization = 0, eps = [Newton decrement] = 3.5691762032374919e-08, KKT residual^2 = 7.1899213089514305e-39 solve_infeasible_start took 0.030393 s. check vertex 2906***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.66859974753176743, r_dual = ||g+A^T nue||^2 = 0.0028402240811845458) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.4808532388711792, t = 1 (tmax=1), res_primal = 3.753410795783307e-31, res_dual = 0.083787725256780951, regularization = 0, KKT residual^2 = 5.2432586977748602e-32 iter: 1, feasible, f(x) = 0.46054683821819953, t = 1 (tmax=1), res_primal = 3.2437322498123565e-31, res_dual = 0.00027232692883003787, regularization = 0, eps = [Newton decrement] = 0.038850531468933663, KKT residual^2 = 4.3796085903814124e-33 iter: 2, feasible, f(x) = 0.46044637722567749, t = 1 (tmax=1), res_primal = 3.6164201334828897e-31, res_dual = 8.8192306204656132e-09, regularization = 0, eps = [Newton decrement] = 0.00020020304340395733, KKT residual^2 = 1.4058896129708323e-35 iter: 3, feasible, f(x) = 0.46044637377907294, t = 1 (tmax=1), res_primal = 2.5401661959869162e-31, res_dual = 2.2747188606663268e-12, regularization = 0, eps = [Newton decrement] = 6.8461822729568369e-09, KKT residual^2 = 6.5941013223697024e-40 solve_infeasible_start took 0.0079889999999999996 s. check vertex 2908***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.85451054236025781, r_dual = ||g+A^T nue||^2 = 0.0013615732717613494) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.44220470604203893, t = 1 (tmax=1), res_primal = 5.9588329549138618e-31, res_dual = 0.07694302360699122, regularization = 0, KKT residual^2 = 6.1713761621989715e-32 iter: 1, feasible, f(x) = 0.42040603334392057, t = 1 (tmax=1), res_primal = 6.8830521510553282e-31, res_dual = 0.00048739382215511702, regularization = 0, eps = [Newton decrement] = 0.041236807756171751, KKT residual^2 = 3.5306031283488909e-33 iter: 2, feasible, f(x) = 0.42020905914080992, t = 1 (tmax=1), res_primal = 6.9896026872194206e-31, res_dual = 2.3501423243740925e-07, regularization = 0, eps = [Newton decrement] = 0.00038762525760183982, KKT residual^2 = 2.8218160394951543e-35 iter: 3, feasible, f(x) = 0.42020889001730899, t = 1 (tmax=1), res_primal = 8.7609765888739966e-31, res_dual = 7.6178243473747078e-10, regularization = 0, eps = [Newton decrement] = 3.218331725078406e-07, KKT residual^2 = 5.4590624182158298e-38 solve_infeasible_start took 0.020265000000000002 s. check vertex 2920***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.93154443910816342, r_dual = ||g+A^T nue||^2 = 0.0014612951952241171) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.48245910855767987, t = 1 (tmax=1), res_primal = 5.4097138269179579e-31, res_dual = 0.071585363169421712, regularization = 0, KKT residual^2 = 5.0432313222542264e-32 iter: 1, feasible, f(x) = 0.45771270470990377, t = 1 (tmax=1), res_primal = 4.4151447868513841e-31, res_dual = 0.00034601054595358416, regularization = 0, eps = [Newton decrement] = 0.046919702513878614, KKT residual^2 = 2.8616819694667192e-33 iter: 2, feasible, f(x) = 0.45752369526013881, t = 1 (tmax=1), res_primal = 5.9903975842210634e-31, res_dual = 1.2119959976029733e-07, regularization = 0, eps = [Newton decrement] = 0.00037393020912489835, KKT residual^2 = 2.6377519224551097e-35 iter: 3, feasible, f(x) = 0.45752359861337299, t = 1 (tmax=1), res_primal = 6.2109085180796584e-31, res_dual = 5.9689356325636857e-10, regularization = 0, eps = [Newton decrement] = 1.8245732326429274e-07, KKT residual^2 = 1.8737494651358685e-38 solve_infeasible_start took 0.016507999999999998 s. check vertex 2921***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.60891007196284896, r_dual = ||g+A^T nue||^2 = 0.001760893329682099) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.58555727766453503, t = 1 (tmax=1), res_primal = 3.4760216519945124e-31, res_dual = 0.13674315318021582, regularization = 0, KKT residual^2 = 1.0619759555536897e-31 iter: 1, feasible, f(x) = 0.54290599625387048, t = 1 (tmax=1), res_primal = 4.7383617761551549e-31, res_dual = 0.0015098399810166837, regularization = 0, eps = [Newton decrement] = 0.0793924041091323, KKT residual^2 = 5.3973833240611862e-33 iter: 2, feasible, f(x) = 0.54228652735608707, t = 1 (tmax=1), res_primal = 5.7651334409927256e-31, res_dual = 8.8592635186721037e-07, regularization = 0, eps = [Newton decrement] = 0.0012183843759851921, KKT residual^2 = 1.1938311227135686e-34 iter: 3, feasible, f(x) = 0.54228600206247002, t = 1 (tmax=1), res_primal = 4.9556307676637399e-31, res_dual = 2.612068594455968e-09, regularization = 0, eps = [Newton decrement] = 1.0077143720937523e-06, KKT residual^2 = 1.3498876785529387e-37 iter: 4, feasible, f(x) = 0.54228600043514508, t = 1 (tmax=1), res_primal = 4.0251027990369927e-31, res_dual = 1.4880462324185498e-11, regularization = 0, eps = [Newton decrement] = 3.027986834504566e-09, KKT residual^2 = 4.6539654190891793e-40 solve_infeasible_start took 0.025016000000000004 s. check vertex 2922***** optimize via Newton (infeasible start version) with 216 unknowns and 178 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.88085746910433105, r_dual = ||g+A^T nue||^2 = 0.00074196155801657042) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.47549952903962334, t = 1 (tmax=1), res_primal = 9.181230913401086e-31, res_dual = 0.058941763311278608, regularization = 0, KKT residual^2 = 8.282939644169588e-32 iter: 1, feasible, f(x) = 0.44340639739098797, t = 1 (tmax=1), res_primal = 9.260103252913555e-31, res_dual = 0.00077607654206064756, regularization = 0, eps = [Newton decrement] = 0.059822172713176656, KKT residual^2 = 3.5265664203882379e-33 iter: 2, feasible, f(x) = 0.44291445409871588, t = 1 (tmax=1), res_primal = 7.2778497455891823e-31, res_dual = 1.0159201706028312e-06, regularization = 0, eps = [Newton decrement] = 0.00095995327310873999, KKT residual^2 = 5.643442754606287e-35 iter: 3, feasible, f(x) = 0.44291349862935869, t = 1 (tmax=1), res_primal = 1.0365765414470749e-30, res_dual = 5.2784778994749243e-09, regularization = 0, eps = [Newton decrement] = 1.7978529088552975e-06, KKT residual^2 = 1.9388341865958999e-37 iter: 4, feasible, f(x) = 0.44291349192455659, t = 1 (tmax=1), res_primal = 9.6700355250400838e-31, res_dual = 7.1014205276671054e-11, regularization = 0, eps = [Newton decrement] = 1.2024774105531336e-08, KKT residual^2 = 2.3469731731692694e-39 solve_infeasible_start took 0.024381 s. check vertex 2925***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.1152490941796738, r_dual = ||g+A^T nue||^2 = 0.0014643714419120529) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.56533511969119155, t = 1 (tmax=1), res_primal = 7.0079340342183864e-31, res_dual = 0.10957734950860484, regularization = 0, KKT residual^2 = 7.2038979080670703e-32 iter: 1, feasible, f(x) = 0.53119390793021892, t = 1 (tmax=1), res_primal = 5.4770614004401018e-31, res_dual = 0.00073674155465450056, regularization = 0, eps = [Newton decrement] = 0.064245027172616515, KKT residual^2 = 6.7402005911444613e-33 iter: 2, feasible, f(x) = 0.53084587387948556, t = 1 (tmax=1), res_primal = 7.0653715757975674e-31, res_dual = 3.2877386143346602e-07, regularization = 0, eps = [Newton decrement] = 0.0006872410296991753, KKT residual^2 = 3.3273473541897279e-35 iter: 3, feasible, f(x) = 0.53084564946162061, t = 1 (tmax=1), res_primal = 6.8348164480845855e-31, res_dual = 1.7897862904862586e-09, regularization = 0, eps = [Newton decrement] = 4.2421243304267161e-07, KKT residual^2 = 4.8189091621867346e-38 solve_infeasible_start took 0.017888000000000001 s. check vertex 2927***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.77609486386380389, r_dual = ||g+A^T nue||^2 = 0.0018560793074295912) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.50820933760920561, t = 1 (tmax=1), res_primal = 4.0876482099087145e-31, res_dual = 0.10826825297310526, regularization = 0, KKT residual^2 = 1.1200095366845055e-31 iter: 1, feasible, f(x) = 0.48073834511189473, t = 1 (tmax=1), res_primal = 5.9166768565639313e-31, res_dual = 0.00064282710190189437, regularization = 0, eps = [Newton decrement] = 0.051835690238841617, KKT residual^2 = 6.9695549681287069e-33 iter: 2, feasible, f(x) = 0.48048909615195329, t = 1 (tmax=1), res_primal = 8.2433857438730704e-31, res_dual = 4.4184793706715598e-07, regularization = 0, eps = [Newton decrement] = 0.00048946170884293005, KKT residual^2 = 5.2124874908710401e-35 iter: 3, feasible, f(x) = 0.4804888090609537, t = 1 (tmax=1), res_primal = 8.4567192472429537e-31, res_dual = 2.3004034254058486e-09, regularization = 0, eps = [Newton decrement] = 5.3886197638699968e-07, KKT residual^2 = 7.7359651144059048e-38 solve_infeasible_start took 0.011835 s. check vertex 2928***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.74732341189794238, r_dual = ||g+A^T nue||^2 = 0.00066824305327268011) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.3565644814986082, t = 1 (tmax=1), res_primal = 6.9940053797921278e-31, res_dual = 0.037036378640485021, regularization = 0, KKT residual^2 = 5.6128368395219175e-32 iter: 1, feasible, f(x) = 0.33987583029120882, t = 1 (tmax=1), res_primal = 7.8993059792137516e-31, res_dual = 0.00022263749840320058, regularization = 0, eps = [Newton decrement] = 0.031781042692947362, KKT residual^2 = 2.3840808891702166e-33 iter: 2, feasible, f(x) = 0.33975883629533882, t = 1 (tmax=1), res_primal = 7.1054137664328391e-31, res_dual = 6.8995626812719349e-08, regularization = 0, eps = [Newton decrement] = 0.00023107166456557511, KKT residual^2 = 1.5651395628449099e-35 iter: 3, feasible, f(x) = 0.33975877819301048, t = 1 (tmax=1), res_primal = 6.1626732469763235e-31, res_dual = 1.318657614224352e-10, regularization = 0, eps = [Newton decrement] = 1.1231181909512994e-07, KKT residual^2 = 1.2918675944118795e-38 solve_infeasible_start took 0.018545000000000002 s. check vertex 2929***** optimize via Newton (infeasible start version) with 216 unknowns and 178 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.1220726909824965, r_dual = ||g+A^T nue||^2 = 0.00062950813057987144) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.4195185398608724, t = 1 (tmax=1), res_primal = 7.5335802486774486e-31, res_dual = 0.052114429312027095, regularization = 0, KKT residual^2 = 5.6772006654897491e-32 iter: 1, feasible, f(x) = 0.39582602945632556, t = 1 (tmax=1), res_primal = 1.2791963097927985e-30, res_dual = 0.00033820345882809599, regularization = 0, eps = [Newton decrement] = 0.044664558768369084, KKT residual^2 = 6.1389385756284879e-33 iter: 2, feasible, f(x) = 0.39561102510204738, t = 1 (tmax=1), res_primal = 9.1724858567354583e-31, res_dual = 3.3090961151618077e-07, regularization = 0, eps = [Newton decrement] = 0.00041990626243650119, KKT residual^2 = 3.7945889930103857e-35 iter: 3, feasible, f(x) = 0.39561066659374733, t = 1 (tmax=1), res_primal = 1.0522731374847363e-30, res_dual = 2.2099322133245437e-09, regularization = 0, eps = [Newton decrement] = 6.6691716261012092e-07, KKT residual^2 = 1.0966242056219984e-37 solve_infeasible_start took 0.020341000000000001 s. check vertex 2931***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.83487177785097877, r_dual = ||g+A^T nue||^2 = 0.0027613246548347866) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.57188678434849405, t = 1 (tmax=1), res_primal = 4.674568074254473e-31, res_dual = 0.15618494269383851, regularization = 0, KKT residual^2 = 1.7691354537097242e-31 iter: 1, feasible, f(x) = 0.53448225198323163, t = 1 (tmax=1), res_primal = 5.1188153745527955e-31, res_dual = 0.0015002181136688322, regularization = 0, eps = [Newton decrement] = 0.069773302992629876, KKT residual^2 = 1.2340297416061324e-32 iter: 2, feasible, f(x) = 0.53394784076055557, t = 1 (tmax=1), res_primal = 3.9003777535191819e-31, res_dual = 6.5667236681243527e-07, regularization = 0, eps = [Newton decrement] = 0.0010536520010722302, KKT residual^2 = 5.4721798729612899e-35 iter: 3, feasible, f(x) = 0.53394752318944583, t = 1 (tmax=1), res_primal = 4.4456290359211765e-31, res_dual = 9.6604209531654055e-10, regularization = 0, eps = [Newton decrement] = 6.1866254292956643e-07, KKT residual^2 = 8.5115120929294474e-38 solve_infeasible_start took 0.010835000000000001 s. check vertex 2935***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.82855493534707914, r_dual = ||g+A^T nue||^2 = 0.0039148300334938954) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.62996916971430306, t = 1 (tmax=1), res_primal = 5.8789152996029151e-31, res_dual = 0.19192485880981053, regularization = 0, KKT residual^2 = 1.0510479517349358e-31 iter: 1, feasible, f(x) = 0.58761514023129635, t = 1 (tmax=1), res_primal = 5.2247414094233501e-31, res_dual = 0.0016405566098147506, regularization = 0, eps = [Newton decrement] = 0.079315555705189889, KKT residual^2 = 1.5117509228949775e-32 iter: 2, feasible, f(x) = 0.58711228448852393, t = 1 (tmax=1), res_primal = 6.0712964061091828e-31, res_dual = 5.4515259091726728e-07, regularization = 0, eps = [Newton decrement] = 0.00099406049083361849, KKT residual^2 = 7.5032262154495556e-35 iter: 3, feasible, f(x) = 0.58711208326903586, t = 1 (tmax=1), res_primal = 6.346070477862302e-31, res_dual = 5.1000001566230476e-10, regularization = 0, eps = [Newton decrement] = 3.9387917369705602e-07, KKT residual^2 = 2.932361406011014e-38 solve_infeasible_start took 0.014903000000000001 s. check vertex 2943***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.84586107169927238, r_dual = ||g+A^T nue||^2 = 0.0019317232841121702) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.48257665130638361, t = 1 (tmax=1), res_primal = 7.6382414209012375e-31, res_dual = 0.10094705109930696, regularization = 0, KKT residual^2 = 5.9799143699569837e-32 iter: 1, feasible, f(x) = 0.45390994234937404, t = 1 (tmax=1), res_primal = 6.065277727036523e-31, res_dual = 0.0011568899126162392, regularization = 0, eps = [Newton decrement] = 0.053593194861462808, KKT residual^2 = 6.5848266117228384e-33 iter: 2, feasible, f(x) = 0.45351208418591776, t = 1 (tmax=1), res_primal = 6.9260592101024554e-31, res_dual = 8.07992135603155e-07, regularization = 0, eps = [Newton decrement] = 0.00078039362654632859, KKT residual^2 = 1.0505790132331223e-34 iter: 3, feasible, f(x) = 0.45351168846450779, t = 1 (tmax=1), res_primal = 5.3137440461844332e-31, res_dual = 1.1224550092698441e-09, regularization = 0, eps = [Newton decrement] = 7.6739909828644215e-07, KKT residual^2 = 7.5144638000642361e-38 solve_infeasible_start took 0.015167 s. check vertex 2944***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.72120399380615396, r_dual = ||g+A^T nue||^2 = 0.0020132636215458031) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.7306204582774396, t = 1 (tmax=1), res_primal = 4.1410768494423651e-31, res_dual = 0.80048253676666647, regularization = 0, KKT residual^2 = 9.9391099987098715e-32 iter: 1, feasible, f(x) = 0.63776532328088731, t = 1 (tmax=1), res_primal = 4.5883524741624996e-31, res_dual = 0.04059728961534731, regularization = 0, eps = [Newton decrement] = 0.16228983179322232, KKT residual^2 = 3.1154620819761174e-32 iter: 2, feasible, f(x) = 0.63102980433509015, t = 1 (tmax=1), res_primal = 5.0214259652528201e-31, res_dual = 0.00036123846053303434, regularization = 0, eps = [Newton decrement] = 0.012604806758727605, KKT residual^2 = 9.5579796487496539e-34 iter: 3, feasible, f(x) = 0.63095347120082579, t = 1 (tmax=1), res_primal = 4.3906291694466465e-31, res_dual = 2.1584836490671159e-07, regularization = 0, eps = [Newton decrement] = 0.00014935699588126042, KKT residual^2 = 1.4533500643361406e-35 iter: 4, feasible, f(x) = 0.63095337753964342, t = 1 (tmax=1), res_primal = 3.9062335082383148e-31, res_dual = 8.6570061502290481e-10, regularization = 0, eps = [Newton decrement] = 1.7764985498832901e-07, KKT residual^2 = 3.0402003845487855e-38 solve_infeasible_start took 0.010740999999999999 s. check vertex 2948***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.89908525795585981, r_dual = ||g+A^T nue||^2 = 0.002642647227598628) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.64116963636741653, t = 1 (tmax=1), res_primal = 5.8581156318248685e-31, res_dual = 0.27520177516039063, regularization = 0, KKT residual^2 = 6.4803603082576512e-32 iter: 1, feasible, f(x) = 0.59308752709048351, t = 1 (tmax=1), res_primal = 4.7855682190994136e-31, res_dual = 0.0035423414125475223, regularization = 0, eps = [Newton decrement] = 0.088871975739442138, KKT residual^2 = 8.6990314901186245e-33 iter: 2, feasible, f(x) = 0.5921981381333119, t = 1 (tmax=1), res_primal = 4.3105395131830196e-31, res_dual = 3.9050865383530986e-06, regularization = 0, eps = [Newton decrement] = 0.0017308906090917698, KKT residual^2 = 1.6613582586424556e-34 iter: 3, feasible, f(x) = 0.59219647318931057, t = 1 (tmax=1), res_primal = 5.6772281937714194e-31, res_dual = 1.0622852779682725e-08, regularization = 0, eps = [Newton decrement] = 3.1877614290477624e-06, KKT residual^2 = 3.8612838606826396e-37 iter: 4, feasible, f(x) = 0.59219646838000817, t = 1 (tmax=1), res_primal = 3.9220830877420367e-31, res_dual = 5.2131909716861856e-11, regularization = 0, eps = [Newton decrement] = 8.9741828450908429e-09, KKT residual^2 = 1.4264932920500715e-39 solve_infeasible_start took 0.013705999999999999 s. check vertex 2950***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.82918238174803083, r_dual = ||g+A^T nue||^2 = 0.0015215578053750629) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.51481960003373839, t = 1 (tmax=1), res_primal = 4.0331631846934806e-31, res_dual = 0.097975185712196738, regularization = 0, KKT residual^2 = 8.2096358300719744e-32 iter: 1, feasible, f(x) = 0.48517144143800045, t = 1 (tmax=1), res_primal = 5.3696359309005822e-31, res_dual = 0.00097248434934180182, regularization = 0, eps = [Newton decrement] = 0.055627578381174436, KKT residual^2 = 3.4697448763351794e-33 iter: 2, feasible, f(x) = 0.48480774642477026, t = 1 (tmax=1), res_primal = 7.2482168042755187e-31, res_dual = 6.5460784427616135e-07, regularization = 0, eps = [Newton decrement] = 0.00071434252601842367, KKT residual^2 = 4.8054636188083396e-35 iter: 3, feasible, f(x) = 0.48480741336955241, t = 1 (tmax=1), res_primal = 6.4561505236817685e-31, res_dual = 1.0598085293835053e-09, regularization = 0, eps = [Newton decrement] = 6.4586789736555226e-07, KKT residual^2 = 4.5531530876763256e-38 solve_infeasible_start took 0.012573000000000001 s. check vertex 2952***** optimize via Newton (infeasible start version) with 144 unknowns and 117 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.54883447607502667, r_dual = ||g+A^T nue||^2 = 0.00053324354506515228) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.42291554005355736, t = 1 (tmax=1), res_primal = 4.5610309678572168e-31, res_dual = 0.096193294304987575, regularization = 0, KKT residual^2 = 4.0805839002489928e-32 iter: 1, feasible, f(x) = 0.39619513691267605, t = 1 (tmax=1), res_primal = 4.3981681928003345e-31, res_dual = 0.0011741223049111132, regularization = 0, eps = [Newton decrement] = 0.050089270925593399, KKT residual^2 = 6.0108329571036408e-33 iter: 2, feasible, f(x) = 0.39585759741762327, t = 1 (tmax=1), res_primal = 6.4869610598171479e-31, res_dual = 1.1761083887004202e-06, regularization = 0, eps = [Newton decrement] = 0.00066008636611410241, KKT residual^2 = 4.1336531451066613e-35 iter: 3, feasible, f(x) = 0.3958571041017227, t = 1 (tmax=1), res_primal = 5.3732946038034254e-31, res_dual = 3.7985450344162286e-09, regularization = 0, eps = [Newton decrement] = 9.3833864346955237e-07, KKT residual^2 = 9.362572892145809e-38 solve_infeasible_start took 0.013627999999999999 s. check vertex 2953***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.0341043538103183, r_dual = ||g+A^T nue||^2 = 0.0013617502106631149) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.51111645262392402, t = 1 (tmax=1), res_primal = 7.4855028731342119e-31, res_dual = 0.089368180247531723, regularization = 0, KKT residual^2 = 9.3339006318747114e-32 iter: 1, feasible, f(x) = 0.48099512373065456, t = 1 (tmax=1), res_primal = 7.8489391090277755e-31, res_dual = 0.00053726172364606986, regularization = 0, eps = [Newton decrement] = 0.056865412455745751, KKT residual^2 = 5.5487768563202858e-33 iter: 2, feasible, f(x) = 0.48073121522898915, t = 1 (tmax=1), res_primal = 7.4577458338198591e-31, res_dual = 1.9013506249557596e-07, regularization = 0, eps = [Newton decrement] = 0.00052169991424793369, KKT residual^2 = 3.5720527119713891e-35 iter: 3, feasible, f(x) = 0.48073105556426232, t = 1 (tmax=1), res_primal = 8.7750176075945948e-31, res_dual = 1.3068752896987061e-09, regularization = 0, eps = [Newton decrement] = 2.9652124713499088e-07, KKT residual^2 = 4.0430833168430749e-38 solve_infeasible_start took 0.014192999999999999 s. check vertex 2958***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.58398502538400099, r_dual = ||g+A^T nue||^2 = 0.0031333711941311584) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.51085803977570787, t = 1 (tmax=1), res_primal = 4.5387642094941566e-31, res_dual = 0.10001870406329981, regularization = 0, KKT residual^2 = 6.6939955164445483e-32 iter: 1, feasible, f(x) = 0.48677811516600716, t = 1 (tmax=1), res_primal = 2.8661604728331801e-31, res_dual = 0.00043555455794641276, regularization = 0, eps = [Newton decrement] = 0.045817914248565995, KKT residual^2 = 7.4656707025510419e-33 iter: 2, feasible, f(x) = 0.4866223670633778, t = 1 (tmax=1), res_primal = 3.0831834645545843e-31, res_dual = 6.4283927776238921e-08, regularization = 0, eps = [Newton decrement] = 0.00030929627072241809, KKT residual^2 = 2.1468171530307269e-35 iter: 3, feasible, f(x) = 0.48662233504903551, t = 1 (tmax=1), res_primal = 3.3116179488720036e-31, res_dual = 1.1248243479045497e-10, regularization = 0, eps = [Newton decrement] = 6.1997506302860791e-08, KKT residual^2 = 7.7845295317648889e-39 solve_infeasible_start took 0.009947000000000001 s. check vertex 2961***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.74371441959686835, r_dual = ||g+A^T nue||^2 = 0.0019746903889286994) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.6338543725838679, t = 1 (tmax=1), res_primal = 5.7613929448278573e-31, res_dual = 0.19018625502140027, regularization = 0, KKT residual^2 = 1.1574826246775172e-31 iter: 1, feasible, f(x) = 0.58422765630910123, t = 1 (tmax=1), res_primal = 4.9722767089226634e-31, res_dual = 0.0034239730976306361, regularization = 0, eps = [Newton decrement] = 0.091538770178457241, KKT residual^2 = 1.2169020326008483e-32 iter: 2, feasible, f(x) = 0.58322219379256812, t = 1 (tmax=1), res_primal = 4.862373483857307e-31, res_dual = 3.4889054425966257e-06, regularization = 0, eps = [Newton decrement] = 0.0019697650093197438, KKT residual^2 = 2.0318026699412337e-34 iter: 3, feasible, f(x) = 0.58322104642158856, t = 1 (tmax=1), res_primal = 4.7831657592014567e-31, res_dual = 2.7723086313433254e-09, regularization = 0, eps = [Newton decrement] = 2.2594647189925454e-06, KKT residual^2 = 1.9473082753421437e-37 iter: 4, feasible, f(x) = 0.58322104518427254, t = 1 (tmax=1), res_primal = 2.6310801949823405e-31, res_dual = 1.8635864459924874e-11, regularization = 0, eps = [Newton decrement] = 2.2901687469406834e-09, KKT residual^2 = 4.1015712127666626e-40 solve_infeasible_start took 0.011107000000000001 s. check vertex 2972***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.81341449884983219, r_dual = ||g+A^T nue||^2 = 0.0018104255334106876) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.48904049665574006, t = 1 (tmax=1), res_primal = 6.7284394654956695e-31, res_dual = 0.09295276149505316, regularization = 0, KKT residual^2 = 4.6921378005910513e-32 iter: 1, feasible, f(x) = 0.46110058360642781, t = 1 (tmax=1), res_primal = 6.8507627438101876e-31, res_dual = 0.00092907675770333761, regularization = 0, eps = [Newton decrement] = 0.052497479970694177, KKT residual^2 = 4.710334553078865e-33 iter: 2, feasible, f(x) = 0.46077462534382041, t = 1 (tmax=1), res_primal = 7.4340972362381551e-31, res_dual = 4.9921538816156311e-07, regularization = 0, eps = [Newton decrement] = 0.00064159317240419496, KKT residual^2 = 2.2588756766819486e-35 iter: 3, feasible, f(x) = 0.46077439082566474, t = 1 (tmax=1), res_primal = 7.725030348223736e-31, res_dual = 6.2895654775151651e-10, regularization = 0, eps = [Newton decrement] = 4.5627828325276037e-07, KKT residual^2 = 4.4185715887298231e-38 solve_infeasible_start took 0.021295000000000001 s. check vertex 2975***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.82212959094934279, r_dual = ||g+A^T nue||^2 = 0.0013395111959940036) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.48228128882404186, t = 1 (tmax=1), res_primal = 7.8985189653304078e-31, res_dual = 0.070012168282229531, regularization = 0, KKT residual^2 = 6.1081157274885589e-32 iter: 1, feasible, f(x) = 0.45597706459173182, t = 1 (tmax=1), res_primal = 8.301179251403901e-31, res_dual = 0.00050087394257187969, regularization = 0, eps = [Newton decrement] = 0.049627724512018148, KKT residual^2 = 5.3527595758017616e-33 iter: 2, feasible, f(x) = 0.45570068152924836, t = 1 (tmax=1), res_primal = 5.7994311988614354e-31, res_dual = 3.1559197549961958e-07, regularization = 0, eps = [Newton decrement] = 0.00054374595037025124, KKT residual^2 = 3.8640532962776109e-35 iter: 3, feasible, f(x) = 0.4557004550991548, t = 1 (tmax=1), res_primal = 6.7078880040177796e-31, res_dual = 3.7954442240349141e-10, regularization = 0, eps = [Newton decrement] = 4.4315027580859754e-07, KKT residual^2 = 3.8920909915220145e-38 solve_infeasible_start took 0.012378999999999999 s. check vertex 2977***** optimize via Newton (infeasible start version) with 216 unknowns and 178 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.87057657887868478, r_dual = ||g+A^T nue||^2 = 0.0006178927830721092) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.38686569522571546, t = 1 (tmax=1), res_primal = 8.1544611534786564e-31, res_dual = 0.034525250555306961, regularization = 0, KKT residual^2 = 4.9869224830986482e-32 iter: 1, feasible, f(x) = 0.36908619970888162, t = 1 (tmax=1), res_primal = 1.0004981072362487e-30, res_dual = 0.00012774392444065861, regularization = 0, eps = [Newton decrement] = 0.034004229272294059, KKT residual^2 = 2.8502422290106262e-33 iter: 2, feasible, f(x) = 0.36899533253366579, t = 1 (tmax=1), res_primal = 7.9214978279617059e-31, res_dual = 2.8302390049555116e-08, regularization = 0, eps = [Newton decrement] = 0.00018037011592289667, KKT residual^2 = 1.2986789454351653e-35 iter: 3, feasible, f(x) = 0.36899530766864364, t = 1 (tmax=1), res_primal = 7.7165690921046997e-31, res_dual = 1.2194173505678638e-10, regularization = 0, eps = [Newton decrement] = 4.7295436188172943e-08, KKT residual^2 = 7.4955827779034687e-39 solve_infeasible_start took 0.023368000000000003 s. check vertex 2978***** optimize via Newton (infeasible start version) with 90 unknowns and 73 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.79783679039250366, r_dual = ||g+A^T nue||^2 = 0.0050678210637632145) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.69550643877033991, t = 1 (tmax=1), res_primal = 3.3377366814995062e-31, res_dual = 0.2788354205596914, regularization = 0, KKT residual^2 = 1.6404920070060453e-31 iter: 1, feasible, f(x) = 0.65031225582030583, t = 1 (tmax=1), res_primal = 5.9397794359009648e-31, res_dual = 0.0025547915439886153, regularization = 0, eps = [Newton decrement] = 0.08433509963336687, KKT residual^2 = 1.6895297252637333e-32 iter: 2, feasible, f(x) = 0.64968343259255756, t = 1 (tmax=1), res_primal = 4.8558479211189679e-31, res_dual = 1.1007844366480846e-06, regularization = 0, eps = [Newton decrement] = 0.0012405796658130361, KKT residual^2 = 7.4209343947314677e-35 iter: 3, feasible, f(x) = 0.6496830967911239, t = 1 (tmax=1), res_primal = 3.9546143995610458e-31, res_dual = 8.5243768309780774e-10, regularization = 0, eps = [Newton decrement] = 6.5976741762003107e-07, KKT residual^2 = 9.7265418554984624e-38 solve_infeasible_start took 0.01516 s. check vertex 2980***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.91065067462827287, r_dual = ||g+A^T nue||^2 = 0.0030277481780449467) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.68892846491457616, t = 1 (tmax=1), res_primal = 3.0943148722665593e-31, res_dual = 0.36045027044608136, regularization = 0, KKT residual^2 = 7.2885679855357784e-32 iter: 1, feasible, f(x) = 0.63273285156594083, t = 1 (tmax=1), res_primal = 5.1139397240757169e-31, res_dual = 0.0085469069634601536, regularization = 0, eps = [Newton decrement] = 0.10209007564466942, KKT residual^2 = 1.3731106514411271e-32 iter: 2, feasible, f(x) = 0.63094233018412571, t = 1 (tmax=1), res_primal = 4.3421319753171908e-31, res_dual = 2.3250577926611155e-05, regularization = 0, eps = [Newton decrement] = 0.0034321165105858529, KKT residual^2 = 2.8265558638151157e-34 iter: 3, feasible, f(x) = 0.63093503504253567, t = 1 (tmax=1), res_primal = 4.7468255530380736e-31, res_dual = 2.9409166610935628e-08, regularization = 0, eps = [Newton decrement] = 1.4152454609427916e-05, KKT residual^2 = 1.4144508902203933e-36 iter: 4, feasible, f(x) = 0.63093502214566721, t = 1 (tmax=1), res_primal = 3.5207237746138686e-31, res_dual = 1.4921758525121728e-10, regularization = 0, eps = [Newton decrement] = 2.4191831690656873e-08, KKT residual^2 = 8.6855877618247022e-39 solve_infeasible_start took 0.011665000000000002 s. check vertex 2983***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.78294706346824361, r_dual = ||g+A^T nue||^2 = 0.003875975680984758) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.77011107866844086, t = 1 (tmax=1), res_primal = 4.7480451557786741e-31, res_dual = 0.32980557003896316, regularization = 0, KKT residual^2 = 9.2410297283623903e-32 iter: 1, feasible, f(x) = 0.704267571455788, t = 1 (tmax=1), res_primal = 4.5821226111617652e-31, res_dual = 0.004772511126565091, regularization = 0, eps = [Newton decrement] = 0.12126932533730714, KKT residual^2 = 1.4867298134753375e-32 iter: 2, feasible, f(x) = 0.70298095081359413, t = 1 (tmax=1), res_primal = 2.7704666077380092e-31, res_dual = 3.082467795820444e-06, regularization = 0, eps = [Newton decrement] = 0.0025284947322558129, KKT residual^2 = 2.1719377457543848e-34 iter: 3, feasible, f(x) = 0.70297990320873138, t = 1 (tmax=1), res_primal = 4.0737925146023557e-31, res_dual = 2.7916903671324768e-09, regularization = 0, eps = [Newton decrement] = 2.0533740128522594e-06, KKT residual^2 = 1.1485022110354346e-37 iter: 4, feasible, f(x) = 0.70297990178723246, t = 1 (tmax=1), res_primal = 3.2601265286370517e-31, res_dual = 2.0075724766464428e-11, regularization = 0, eps = [Newton decrement] = 2.6337027104833014e-09, KKT residual^2 = 5.3032294373023111e-40 solve_infeasible_start took 0.011211 s. check vertex 2991***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.81147358930792857, r_dual = ||g+A^T nue||^2 = 0.0011214582419213361) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.41980239207371528, t = 1 (tmax=1), res_primal = 6.6479840585050102e-31, res_dual = 0.041030210194790223, regularization = 0, KKT residual^2 = 5.4671542495125497e-32 iter: 1, feasible, f(x) = 0.40056822781900081, t = 1 (tmax=1), res_primal = 8.4040305909132705e-31, res_dual = 0.00017449174683459965, regularization = 0, eps = [Newton decrement] = 0.036627266860344371, KKT residual^2 = 2.6049788534429455e-33 iter: 2, feasible, f(x) = 0.40044380808921609, t = 1 (tmax=1), res_primal = 1.0847997610988553e-30, res_dual = 1.3828817114927657e-07, regularization = 0, eps = [Newton decrement] = 0.00024501058458688616, KKT residual^2 = 1.8279105820737634e-35 iter: 3, feasible, f(x) = 0.4004436796431764, t = 1 (tmax=1), res_primal = 1.2393915799839174e-30, res_dual = 1.0637521669294234e-09, regularization = 0, eps = [Newton decrement] = 2.384282665931964e-07, KKT residual^2 = 3.15128331821719e-38 solve_infeasible_start took 0.017070000000000002 s. check vertex 3001***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.66131108178997156, r_dual = ||g+A^T nue||^2 = 0.0012584661501281488) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.37980730970236304, t = 1 (tmax=1), res_primal = 4.7401596994910125e-31, res_dual = 0.05148612706212731, regularization = 0, KKT residual^2 = 4.3943451871257485e-32 iter: 1, feasible, f(x) = 0.35942579592923335, t = 1 (tmax=1), res_primal = 3.5948431730250737e-31, res_dual = 0.00031590787801264564, regularization = 0, eps = [Newton decrement] = 0.038487381496218651, KKT residual^2 = 4.2668071634295871e-33 iter: 2, feasible, f(x) = 0.3592393305377537, t = 1 (tmax=1), res_primal = 6.4698572747626392e-31, res_dual = 2.0819584604783528e-07, regularization = 0, eps = [Newton decrement] = 0.0003652986654773984, KKT residual^2 = 2.6549221686571717e-35 iter: 3, feasible, f(x) = 0.3592391424192547, t = 1 (tmax=1), res_primal = 4.8221560521668661e-31, res_dual = 4.6608259222439358e-10, regularization = 0, eps = [Newton decrement] = 3.6269395610202218e-07, KKT residual^2 = 3.1598039921217562e-38 solve_infeasible_start took 0.010762000000000001 s. check vertex 3012***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.87127504495105956, r_dual = ||g+A^T nue||^2 = 0.0011090295242819101) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.42128178274503125, t = 1 (tmax=1), res_primal = 9.3472252268994308e-31, res_dual = 0.046567691523624201, regularization = 0, KKT residual^2 = 7.5795239158450726e-32 iter: 1, feasible, f(x) = 0.40047057779259498, t = 1 (tmax=1), res_primal = 6.2136204355471832e-31, res_dual = 0.00025154710040912781, regularization = 0, eps = [Newton decrement] = 0.039549166942466012, KKT residual^2 = 4.2816462389524541e-33 iter: 2, feasible, f(x) = 0.40031633710102899, t = 1 (tmax=1), res_primal = 8.83148093493417e-31, res_dual = 1.4291977606763714e-07, regularization = 0, eps = [Newton decrement] = 0.00030354612787699661, KKT residual^2 = 1.9472143169978404e-35 iter: 3, feasible, f(x) = 0.40031619056036677, t = 1 (tmax=1), res_primal = 7.0794529574173014e-31, res_dual = 7.286629731898372e-10, regularization = 0, eps = [Newton decrement] = 2.7702297036674007e-07, KKT residual^2 = 4.4032098263557795e-38 solve_infeasible_start took 0.015106 s. check vertex 3016***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.1263212854720899, r_dual = ||g+A^T nue||^2 = 0.0013173125415985179) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.51184203622983837, t = 1 (tmax=1), res_primal = 6.2001405924335036e-31, res_dual = 0.079306276135671011, regularization = 0, KKT residual^2 = 3.8632091467589159e-32 iter: 1, feasible, f(x) = 0.48465721991758648, t = 1 (tmax=1), res_primal = 4.7669317146513259e-31, res_dual = 0.00039159551167073888, regularization = 0, eps = [Newton decrement] = 0.051557973266455073, KKT residual^2 = 4.4488764007416988e-33 iter: 2, feasible, f(x) = 0.48445450274205148, t = 1 (tmax=1), res_primal = 6.617526264282736e-31, res_dual = 1.0403857104098486e-07, regularization = 0, eps = [Newton decrement] = 0.0004018412326072644, KKT residual^2 = 1.9818256133532299e-35 iter: 3, feasible, f(x) = 0.4844544284250647, t = 1 (tmax=1), res_primal = 7.8308998431518948e-31, res_dual = 5.4323758179403569e-10, regularization = 0, eps = [Newton decrement] = 1.4088852123571145e-07, KKT residual^2 = 1.7398682186828824e-38 solve_infeasible_start took 0.010766 s. check vertex 3017***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.90050303556942579, r_dual = ||g+A^T nue||^2 = 0.0029833144867828149) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.55100763351214788, t = 1 (tmax=1), res_primal = 5.744327112565325e-31, res_dual = 0.22361636403378973, regularization = 0, KKT residual^2 = 7.9703372125657754e-32 iter: 1, feasible, f(x) = 0.51183228809487269, t = 1 (tmax=1), res_primal = 4.6104790894771021e-31, res_dual = 0.0043861476285011391, regularization = 0, eps = [Newton decrement] = 0.071462054740125042, KKT residual^2 = 5.9025007134878654e-33 iter: 2, feasible, f(x) = 0.51071690996984798, t = 1 (tmax=1), res_primal = 6.6929877749049649e-31, res_dual = 8.3822720159891117e-06, regularization = 0, eps = [Newton decrement] = 0.0021547947137305207, KKT residual^2 = 2.3114054023494008e-34 iter: 3, feasible, f(x) = 0.51071387030518789, t = 1 (tmax=1), res_primal = 6.3869790104524209e-31, res_dual = 7.4981411825262172e-09, regularization = 0, eps = [Newton decrement] = 5.9338613157635591e-06, KKT residual^2 = 3.4118596708161411e-37 iter: 4, feasible, f(x) = 0.51071386672480235, t = 1 (tmax=1), res_primal = 6.8804523654195655e-31, res_dual = 2.608079704705413e-11, regularization = 0, eps = [Newton decrement] = 6.7771070989273224e-09, KKT residual^2 = 1.0165234638518982e-39 solve_infeasible_start took 0.01736 s. check vertex 3020***** optimize via Newton (infeasible start version) with 198 unknowns and 163 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.1933921826553378, r_dual = ||g+A^T nue||^2 = 0.00067086814624994762) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.41566031839599871, t = 1 (tmax=1), res_primal = 6.9814533421063453e-31, res_dual = 0.034969337393118811, regularization = 0, KKT residual^2 = 4.8694950709911375e-32 iter: 1, feasible, f(x) = 0.39596810591814835, t = 1 (tmax=1), res_primal = 1.080629031950217e-30, res_dual = 0.00017804012358985967, regularization = 0, eps = [Newton decrement] = 0.037476619640347368, KKT residual^2 = 2.2246595805139424e-33 iter: 2, feasible, f(x) = 0.39583910613199325, t = 1 (tmax=1), res_primal = 8.3341410138377182e-31, res_dual = 1.2008749659968451e-07, regularization = 0, eps = [Newton decrement] = 0.0002541109379704436, KKT residual^2 = 1.7743117392000231e-35 iter: 3, feasible, f(x) = 0.39583895360997534, t = 1 (tmax=1), res_primal = 8.431817123474126e-31, res_dual = 1.2613178518675816e-09, regularization = 0, eps = [Newton decrement] = 2.777714498211699e-07, KKT residual^2 = 5.6571536574173803e-38 solve_infeasible_start took 0.023783000000000002 s. check vertex 3022***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.79631449045156311, r_dual = ||g+A^T nue||^2 = 0.0015872164968155291) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.44898805562046706, t = 1 (tmax=1), res_primal = 6.3010471116364203e-31, res_dual = 0.071027389685288239, regularization = 0, KKT residual^2 = 5.994761947101479e-32 iter: 1, feasible, f(x) = 0.42576851278932659, t = 1 (tmax=1), res_primal = 5.6849588065075101e-31, res_dual = 0.00066952689093953985, regularization = 0, eps = [Newton decrement] = 0.043748299115214197, KKT residual^2 = 4.0054329028629864e-33 iter: 2, feasible, f(x) = 0.42550718188807424, t = 1 (tmax=1), res_primal = 5.5270505480853488e-31, res_dual = 3.9534131754948976e-07, regularization = 0, eps = [Newton decrement] = 0.00051356236349881716, KKT residual^2 = 6.9557284887447812e-35 iter: 3, feasible, f(x) = 0.42550696592799359, t = 1 (tmax=1), res_primal = 6.3544241790381418e-31, res_dual = 4.0883626355509674e-10, regularization = 0, eps = [Newton decrement] = 4.2171819024455434e-07, KKT residual^2 = 3.114594686289754e-38 solve_infeasible_start took 0.016941999999999999 s. check vertex 3032***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.0447556567821756, r_dual = ||g+A^T nue||^2 = 0.001622762191869115) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.53985160647271557, t = 1 (tmax=1), res_primal = 6.7534075176521893e-31, res_dual = 0.18702984606978754, regularization = 0, KKT residual^2 = 7.2685006849915431e-32 iter: 1, feasible, f(x) = 0.50171226588219497, t = 1 (tmax=1), res_primal = 7.3464087436280184e-31, res_dual = 0.00338391879244906, regularization = 0, eps = [Newton decrement] = 0.07007570409558421, KKT residual^2 = 8.9102691340485265e-33 iter: 2, feasible, f(x) = 0.50081126382564611, t = 1 (tmax=1), res_primal = 9.2710413202759145e-31, res_dual = 5.0074813081126438e-06, regularization = 0, eps = [Newton decrement] = 0.0017483711263098782, KKT residual^2 = 9.4237165282863572e-35 iter: 3, feasible, f(x) = 0.50080939478902997, t = 1 (tmax=1), res_primal = 8.2294376162799899e-31, res_dual = 3.604807499004061e-09, regularization = 0, eps = [Newton decrement] = 3.6528417251239328e-06, KKT residual^2 = 3.9399442575566554e-37 iter: 4, feasible, f(x) = 0.50080939223975707, t = 1 (tmax=1), res_primal = 8.4317907007489833e-31, res_dual = 2.2236429998883018e-11, regularization = 0, eps = [Newton decrement] = 4.7046562555043611e-09, KKT residual^2 = 1.1707077099753709e-39 solve_infeasible_start took 0.024947 s. check vertex 3036***** optimize via Newton (infeasible start version) with 126 unknowns and 103 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.1172366007589378, r_dual = ||g+A^T nue||^2 = 0.0019967053937839244) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.48341302887725374, t = 1 (tmax=1), res_primal = 4.5093032459992526e-31, res_dual = 0.09947019011772644, regularization = 0, KKT residual^2 = 4.3802908337000412e-32 iter: 1, feasible, f(x) = 0.45710395874670628, t = 1 (tmax=1), res_primal = 5.4489568780248639e-31, res_dual = 0.00088826592357685525, regularization = 0, eps = [Newton decrement] = 0.049371449132620572, KKT residual^2 = 3.1727201398757514e-33 iter: 2, feasible, f(x) = 0.45678828659414972, t = 1 (tmax=1), res_primal = 7.0547127901485062e-31, res_dual = 7.0894706859340234e-07, regularization = 0, eps = [Newton decrement] = 0.00061613498300862823, KKT residual^2 = 4.0720006780062634e-35 iter: 3, feasible, f(x) = 0.45678785817417344, t = 1 (tmax=1), res_primal = 5.6797835078632357e-31, res_dual = 1.2382932306135041e-09, regularization = 0, eps = [Newton decrement] = 8.2871624963885054e-07, KKT residual^2 = 8.177157961896532e-38 solve_infeasible_start took 0.01257 s. check vertex 3041***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.89148581926055015, r_dual = ||g+A^T nue||^2 = 0.0029424166384577769) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.60431611713949129, t = 1 (tmax=1), res_primal = 4.5132529090302355e-31, res_dual = 0.16550520166128291, regularization = 0, KKT residual^2 = 7.3284677376289071e-32 iter: 1, feasible, f(x) = 0.56422909107834074, t = 1 (tmax=1), res_primal = 4.7451586472489411e-31, res_dual = 0.0022876291562546193, regularization = 0, eps = [Newton decrement] = 0.07443482990208368, KKT residual^2 = 1.0767094298166783e-32 iter: 2, feasible, f(x) = 0.56353885488172673, t = 1 (tmax=1), res_primal = 5.1076378152960407e-31, res_dual = 1.8751304788186392e-06, regularization = 0, eps = [Newton decrement] = 0.0013532184853980948, KKT residual^2 = 1.049837038924941e-34 iter: 3, feasible, f(x) = 0.56353807795910416, t = 1 (tmax=1), res_primal = 3.7525078121893462e-31, res_dual = 3.7040919877405286e-09, regularization = 0, eps = [Newton decrement] = 1.5028475818347962e-06, KKT residual^2 = 1.088822440388171e-37 iter: 4, feasible, f(x) = 0.56353807584479232, t = 1 (tmax=1), res_primal = 4.4990120393915852e-31, res_dual = 2.9497098966844708e-11, regularization = 0, eps = [Newton decrement] = 3.8933361321675106e-09, KKT residual^2 = 7.3050796148176191e-40 solve_infeasible_start took 0.022684000000000003 s. check vertex 3044***** optimize via Newton (infeasible start version) with 216 unknowns and 178 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.73182697210156022, r_dual = ||g+A^T nue||^2 = 0.00053397692074946238) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.3881151866046495, t = 1 (tmax=1), res_primal = 1.0937410760431142e-30, res_dual = 0.030010967967238209, regularization = 0, KKT residual^2 = 5.9863950785638273e-32 iter: 1, feasible, f(x) = 0.36925671127432314, t = 1 (tmax=1), res_primal = 9.4890748688732221e-31, res_dual = 0.00012484011358673328, regularization = 0, eps = [Newton decrement] = 0.03599246997411467, KKT residual^2 = 2.7757614038138131e-33 iter: 2, feasible, f(x) = 0.36914952441684878, t = 1 (tmax=1), res_primal = 1.0669407103511548e-30, res_dual = 4.7693618790320545e-08, regularization = 0, eps = [Newton decrement] = 0.0002121460835436868, KKT residual^2 = 1.4083795078666587e-35 iter: 3, feasible, f(x) = 0.36914945725477016, t = 1 (tmax=1), res_primal = 1.0754039794310583e-30, res_dual = 3.8525645906622643e-10, regularization = 0, eps = [Newton decrement] = 1.240896826618985e-07, KKT residual^2 = 1.5740810486065508e-38 solve_infeasible_start took 0.021225000000000001 s. check vertex 3049***** optimize via Newton (infeasible start version) with 144 unknowns and 118 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.81555268354315624, r_dual = ||g+A^T nue||^2 = 0.0016479505039243086) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.43659288466049817, t = 1 (tmax=1), res_primal = 6.6123343889040396e-31, res_dual = 0.064139066164153768, regularization = 0, KKT residual^2 = 3.7991476618385876e-32 iter: 1, feasible, f(x) = 0.41501059622763259, t = 1 (tmax=1), res_primal = 6.7957820197184294e-31, res_dual = 0.00037008896139843403, regularization = 0, eps = [Newton decrement] = 0.040929279153250835, KKT residual^2 = 2.3083741517316078e-33 iter: 2, feasible, f(x) = 0.4148451670567424, t = 1 (tmax=1), res_primal = 6.5160678204667426e-31, res_dual = 1.6187786047576039e-07, regularization = 0, eps = [Newton decrement] = 0.0003261123545429314, KKT residual^2 = 1.8982612818949294e-35 iter: 3, feasible, f(x) = 0.41484505294759971, t = 1 (tmax=1), res_primal = 5.1978994624658414e-31, res_dual = 4.8799243431424016e-10, regularization = 0, eps = [Newton decrement] = 2.1783194698654976e-07, KKT residual^2 = 2.6341096737901424e-38 solve_infeasible_start took 0.011942999999999999 s. check vertex 3051***** optimize via Newton (infeasible start version) with 180 unknowns and 148 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.8336543112663066, r_dual = ||g+A^T nue||^2 = 0.0011156848078623469) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.71994928386714863, t = 1 (tmax=1), res_primal = 6.500301157239388e-31, res_dual = 0.20196657588951511, regularization = 0, KKT residual^2 = 1.0407135583561811e-31 iter: 1, feasible, f(x) = 0.65950280168382924, t = 1 (tmax=1), res_primal = 8.2584897472494617e-31, res_dual = 0.0038484704330518102, regularization = 0, eps = [Newton decrement] = 0.11081811185481494, KKT residual^2 = 1.3363746816411075e-32 iter: 2, feasible, f(x) = 0.65805186347526923, t = 1 (tmax=1), res_primal = 6.5552464712695391e-31, res_dual = 8.2583683237359022e-06, regularization = 0, eps = [Newton decrement] = 0.0027988437487223173, KKT residual^2 = 2.9632629332281289e-34 iter: 3, feasible, f(x) = 0.65804666622898833, t = 1 (tmax=1), res_primal = 7.7654650180207741e-31, res_dual = 4.8354651490829854e-08, regularization = 0, eps = [Newton decrement] = 9.7958625161536413e-06, KKT residual^2 = 1.1241328465050683e-36 iter: 4, feasible, f(x) = 0.65804662957092308, t = 1 (tmax=1), res_primal = 5.4652981325301033e-31, res_dual = 8.4647528026574389e-10, regularization = 0, eps = [Newton decrement] = 6.463998604852263e-08, KKT residual^2 = 1.2617351201652993e-38 solve_infeasible_start took 0.017654 s. check vertex 3054***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.78615862902287703, r_dual = ||g+A^T nue||^2 = 0.00093266167530828715) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.40417448158105529, t = 1 (tmax=1), res_primal = 6.8595559731825362e-31, res_dual = 0.058750660106119568, regularization = 0, KKT residual^2 = 5.36891609156131e-32 iter: 1, feasible, f(x) = 0.38428628019009298, t = 1 (tmax=1), res_primal = 7.2803037277427343e-31, res_dual = 0.00045556545067491954, regularization = 0, eps = [Newton decrement] = 0.037543515798886061, KKT residual^2 = 2.5296099109942774e-33 iter: 2, feasible, f(x) = 0.38408919246973261, t = 1 (tmax=1), res_primal = 7.267475542800658e-31, res_dual = 2.7573605164557699e-07, regularization = 0, eps = [Newton decrement] = 0.00038551640134323959, KKT residual^2 = 3.5094553063514328e-35 iter: 3, feasible, f(x) = 0.38408896301114609, t = 1 (tmax=1), res_primal = 6.3517831970958923e-31, res_dual = 5.446229131831686e-10, regularization = 0, eps = [Newton decrement] = 4.4207015436313072e-07, KKT residual^2 = 5.3914328832591948e-38 solve_infeasible_start took 0.016406 s. check vertex 3062***** optimize via Newton (infeasible start version) with 234 unknowns and 193 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.942339267825413, r_dual = ||g+A^T nue||^2 = 0.00052465107273907269) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.38155382956610007, t = 1 (tmax=1), res_primal = 9.1971079017708307e-31, res_dual = 0.028326742296418628, regularization = 0, KKT residual^2 = 6.4889197453052585e-32 iter: 1, feasible, f(x) = 0.36417345272188251, t = 1 (tmax=1), res_primal = 9.7654564942143935e-31, res_dual = 0.00012423573953757803, regularization = 0, eps = [Newton decrement] = 0.033179587071594178, KKT residual^2 = 2.1644708536111655e-33 iter: 2, feasible, f(x) = 0.36407413731379829, t = 1 (tmax=1), res_primal = 9.0801766103513987e-31, res_dual = 7.4156816715186222e-08, regularization = 0, eps = [Newton decrement] = 0.00019573492405318139, KKT residual^2 = 1.4778391027165792e-35 iter: 3, feasible, f(x) = 0.36407404101497137, t = 1 (tmax=1), res_primal = 9.1063306435689919e-31, res_dual = 5.169972940432762e-10, regularization = 0, eps = [Newton decrement] = 1.7887908162883938e-07, KKT residual^2 = 2.4139470937607535e-38 solve_infeasible_start took 0.020397000000000002 s. check vertex 3064***** optimize via Newton (infeasible start version) with 108 unknowns and 88 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.72044848068891798, r_dual = ||g+A^T nue||^2 = 0.003351642643732459) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.58141229920726989, t = 1 (tmax=1), res_primal = 3.2859552607081869e-31, res_dual = 0.15770762133646324, regularization = 0, KKT residual^2 = 7.201906110366065e-32 iter: 1, feasible, f(x) = 0.54722532743710883, t = 1 (tmax=1), res_primal = 3.7763841812691318e-31, res_dual = 0.0012907151576312401, regularization = 0, eps = [Newton decrement] = 0.063961661736166006, KKT residual^2 = 6.2174022190561333e-33 iter: 2, feasible, f(x) = 0.5467899252705517, t = 1 (tmax=1), res_primal = 2.8662047171452245e-31, res_dual = 9.520612432198911e-07, regularization = 0, eps = [Newton decrement] = 0.00085355869168518518, KKT residual^2 = 8.965492078961526e-35 iter: 3, feasible, f(x) = 0.54678945854177519, t = 1 (tmax=1), res_primal = 3.999950878205886e-31, res_dual = 2.4226229882137067e-09, regularization = 0, eps = [Newton decrement] = 8.9975775057511027e-07, KKT residual^2 = 1.3305497496175402e-37 solve_infeasible_start took 0.012979000000000001 s. check vertex 3070***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.82951960683111681, r_dual = ||g+A^T nue||^2 = 0.0016039279346677247) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.4437892630898847, t = 1 (tmax=1), res_primal = 4.8417239352039873e-31, res_dual = 0.081811622123128314, regularization = 0, KKT residual^2 = 6.4076050411644472e-32 iter: 1, feasible, f(x) = 0.41803294113610079, t = 1 (tmax=1), res_primal = 8.6280172631673686e-31, res_dual = 0.00063021525320241048, regularization = 0, eps = [Newton decrement] = 0.048383951603965483, KKT residual^2 = 5.015553843677817e-33 iter: 2, feasible, f(x) = 0.41775301409067511, t = 1 (tmax=1), res_primal = 6.2004850634127537e-31, res_dual = 4.6665231342115096e-07, regularization = 0, eps = [Newton decrement] = 0.0005473580849522532, KKT residual^2 = 4.7258246516782115e-35 iter: 3, feasible, f(x) = 0.41775267269829164, t = 1 (tmax=1), res_primal = 6.1096385625047793e-31, res_dual = 1.366545855246401e-09, regularization = 0, eps = [Newton decrement] = 6.5384252737448639e-07, KKT residual^2 = 6.8685199686785455e-38 solve_infeasible_start took 0.013016 s. check vertex 3078***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 0.75370206004471352, r_dual = ||g+A^T nue||^2 = 0.0021274596004980605) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.44787919876340643, t = 1 (tmax=1), res_primal = 7.0002379808582581e-31, res_dual = 0.074680314753934204, regularization = 0, KKT residual^2 = 3.9404078680398355e-32 iter: 1, feasible, f(x) = 0.42381524383301095, t = 1 (tmax=1), res_primal = 7.3095722489656899e-31, res_dual = 0.00051737007932097792, regularization = 0, eps = [Newton decrement] = 0.045463841515828891, KKT residual^2 = 3.6467310423399889e-33 iter: 2, feasible, f(x) = 0.42359690694598284, t = 1 (tmax=1), res_primal = 4.7452822869279484e-31, res_dual = 2.2923193133076267e-07, regularization = 0, eps = [Newton decrement] = 0.00043000818636528302, KKT residual^2 = 2.8876701689512811e-35 iter: 3, feasible, f(x) = 0.42359676749905473, t = 1 (tmax=1), res_primal = 6.0663941259863711e-31, res_dual = 3.347581626478705e-10, regularization = 0, eps = [Newton decrement] = 2.7070581895817425e-07, KKT residual^2 = 2.76191412752644e-38 solve_infeasible_start took 0.014563000000000001 s. check vertex 3080***** optimize via Newton (infeasible start version) with 216 unknowns and 178 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.0492625553409598, r_dual = ||g+A^T nue||^2 = 0.00071905150741466417) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.59427192382117588, t = 1 (tmax=1), res_primal = 8.2885884199534208e-31, res_dual = 0.16508894454076267, regularization = 0, KKT residual^2 = 1.01520207822522e-31 iter: 1, feasible, f(x) = 0.54113947793330575, t = 1 (tmax=1), res_primal = 1.1375996026984592e-30, res_dual = 0.0033816624667932231, regularization = 0, eps = [Newton decrement] = 0.097100770545079318, KKT residual^2 = 9.5117718375481128e-33 iter: 2, feasible, f(x) = 0.53975867059938776, t = 1 (tmax=1), res_primal = 8.8715127114317908e-31, res_dual = 8.0090363906484706e-06, regularization = 0, eps = [Newton decrement] = 0.0026614693616758807, KKT residual^2 = 2.3982325519234115e-34 iter: 3, feasible, f(x) = 0.53975378121193274, t = 1 (tmax=1), res_primal = 1.1749123352263752e-30, res_dual = 2.6704218026091896e-08, regularization = 0, eps = [Newton decrement] = 9.3284182039742882e-06, KKT residual^2 = 1.3770386080421281e-36 iter: 4, feasible, f(x) = 0.53975375986872542, t = 1 (tmax=1), res_primal = 7.5589580932267537e-31, res_dual = 2.2660443438752878e-10, regularization = 0, eps = [Newton decrement] = 3.9096165370941706e-08, KKT residual^2 = 6.9590705689382067e-39 solve_infeasible_start took 0.029053000000000002 s. check vertex 3092***** optimize via Newton (infeasible start version) with 162 unknowns and 133 linear constraints (initial residuals r_primal = ||Ax-b||^2 = 1.1628386351243014, r_dual = ||g+A^T nue||^2 = 0.001210096690113022) using linear solver Umfpack iter: 0, infeasible, f(x) = 0.59150666933169094, t = 1 (tmax=1), res_primal = 6.7198573487973656e-31, res_dual = 0.10305283060206512, regularization = 0, KKT residual^2 = 9.7618969037432843e-32 iter: 1, feasible, f(x) = 0.55443982212717779, t = 1 (tmax=1), res_primal = 6.8184632141422092e-31, res_dual = 0.00086153435772372549, regularization = 0, eps = [Newton decrement] = 0.069517333151677047, KKT residual^2 = 5.2575332917565017e-33 iter: 2, feasible, f(x) = 0.55402754438364055, t = 1 (tmax=1), res_primal = 8.687265526300712e-31, res_dual = 5.8737723681233995e-07, regularization = 0, eps = [Newton decrement] = 0.00081054928648343065, KKT residual^2 = 5.4979522710355361e-35 iter: 3, feasible, f(x) = 0.55402711327974263, t = 1 (tmax=1), res_primal = 7.9968555362617383e-31, res_dual = 3.5765678863496756e-09, regularization = 0, eps = [Newton decrement] = 8.0665473608167787e-07, KKT residual^2 = 1.0891431131386694e-37 solve_infeasible_start took 0.016590000000000001 s. All special vertices are locally meshable. Stop pipeline. ###Split for single alignments done! split 0 edges for local meshability test - a split 0 edges for local meshability test - b #Tet mesh data after split: #Tet mesh vertex number: 3108 #Tet mesh edge number: 18407 #Tet mesh face number: 29378 #Tet mesh cell number: 14078 ###Split for local meshability test done! Optimize quaternion field with all alignments ... Checking alignment error: Checking face alignment error: Done! Checking edge alignment error: Done! Done! ###Mesh Quality before post-process: Min/Max cell volume: 7.530976896639807801e-05 / 5.437474463805225255. Min volume cell: 810 Min/Max cell dihedral angle: 0.2009844230498381568 / 179.6155193012708651 Max dihedral angle cell: 810 ###ERROR message on numerical issues in KKT system can be ignored! ERROR: numerical issues in KKT system could not be resolved -> terminating NewtonSolver with current solution @ [solve() in NewtonSolver.cc:236] Min/Max cell volume: 0.009935253428260452935 / 5.411255778979882081. Min volume cell: 8150 Min/Max cell dihedral angle: 26.57618279226842972 / 131.5353264590234232 Max dihedral angle cell: 12948 ###Mesh Quality after post-process: Min/Max cell volume: 0.009935253428260452935 / 5.411255778979882081. Min volume cell: 8150 Min/Max cell dihedral angle: 26.57618279226842972 / 131.5353264590234232 Max dihedral angle cell: 12948 ###Split for single alignments done! split 0 edges for local meshability test - a split 0 edges for local meshability test - b #Tet mesh data after split: #Tet mesh vertex number: 3145 #Tet mesh edge number: 19441 #Tet mesh face number: 31646 #Tet mesh cell number: 15349 ###Split for local meshability test done! ###Mesh Quality in the end: Min/Max cell volume: 0.009734408200100958322 / 5.374087647383452904. Min volume cell: 4414 Min/Max cell dihedral angle: 25.39176472741855761 / 134.9803876191472796 Max dihedral angle cell: 15347 Optimize quaternion field with all alignments ... Checking alignment error: Checking face alignment error: Done! Checking edge alignment error: Done! Done! #####Optimize Frame Field regularized... ---------- Check Valence/Transition Functions consistency ------------- #invalid sectors = 0 ---------- Validity of Valence/Transition Functions = 1 ------------- Min frame rotation angle: 0.00598 Max frame rotation angle: 36.49918 largest angles 36.49918, 32.01235, 30.07346, 28.18710, 28.17032, 28.01274, 27.91418, 26.74225, 25.89266, 25.79046, 25.76344, 25.73154, 25.71297, 25.64298, 25.47720, 25.43831, 25.37910, 25.34075, 25.33050, 25.27813, 25.22206, 25.21939, 25.21871, 25.14350, 25.14173, 25.13100, 24.87939, 24.86765, 24.80655, 24.79452, --- initial energies complete --- AMIPS = -0.00000 (#elements = 15349) AMIPS_TinyAD = -0.00000 (#elements = 15349) LogDet = 15.35668 (#elements = 15349) FrameFit = 0.00000 (#elements = 138141) SymmetricDirichlet = 0.00000 (#elements = 15349) DihedralAngle = 485.78918 (#elements = 92094) EdgeAlignment = 0.00000 (#elements = 1780) FaceAlignment = 0.00000 (#elements = 3792) Integrability = 70.10826 (#elements = 178500) Frame Smoothness = 50.40116 (#elements = 267750) sum = 621.65528 --- initial energies selected --- SymmetricDirichlet = 0.00000 (#elements = 15349) Integrability = 70.10826 (#elements = 178500) Frame Smoothness = 50.40116 (#elements = 267750) sum = 120.50942 ------------------------------- ||x0|| = 219.76048 tolerance = 0.91008 optimize via TruncatedNewtonProjectedNormalEquationsPCG with 138141 unknowns and 5572 linear constraints initial inf-norm constraint violation = 8.5087191914841648e-16 numerically feasible = 1 initial objective value = 120.50941671359826 prepare constraint projection ... done! iter = 0, f(x) = 50.431372245596023, t = 0.39405891061883103 (tmax=0.39405891061883103), #ls = 0, constraint_violation = 8.6784018124933103e-16, |reduced grad| = 12.361948079091214, PCG_tol = 1.2361948079091214, PCG_iters = 40, PCG_converged = 1, g*dx = -223.13475441296544, warmstart = 0, hessian_update = 1, rel_obj_decrease = 0.58151509134385049 iter = 1, f(x) = 28.068496759917977, t = 0.22859185557644221 (tmax=0.22859185557644221), #ls = 0, constraint_violation = 8.7848072550534222e-16, |reduced grad| = 7.5020234913379644, PCG_tol = 0.75020234913379646, PCG_iters = 80, PCG_converged = 1, g*dx = -129.59651644326109, warmstart = 1, hessian_update = 0, rel_obj_decrease = 0.44343182606201859 iter = 2, f(x) = 21.076534852987447, t = 0.53737518269721085 (tmax=0.53737518269721085), #ls = 0, constraint_violation = 8.8496908829713401e-16, |reduced grad| = 4.6879616172033423, PCG_tol = 0.46879616172033423, PCG_iters = 97, PCG_converged = 1, g*dx = -30.491026001423815, warmstart = 1, hessian_update = 0, rel_obj_decrease = 0.24910354005545121 iter = 3, f(x) = 19.815156058692839, t = 0.216 (tmax=1), #ls = 3, constraint_violation = 8.8285905034765858e-16, |reduced grad| = 0.82433502639353018, PCG_tol = 0.082433502639353021, PCG_iters = 154, PCG_converged = 1, g*dx = -12.466588961896608, warmstart = 0, hessian_update = 0, rel_obj_decrease = 0.059847541500201405 iter = 4, f(x) = 19.79863485936329, t = 0.216 (tmax=1), #ls = 3, constraint_violation = 8.8236678520414169e-16, |reduced grad| = 0.59296647677926451, PCG_tol = 0.059296647677926452, PCG_iters = 171, PCG_converged = 1, g*dx = -0.34166388867087727, warmstart = 1, hessian_update = 1, rel_obj_decrease = 0.00083376579425431909 iter = 5, f(x) = 19.670751481071107, t = 1 (tmax=1), #ls = 0, constraint_violation = 8.8214346254087566e-16, |reduced grad| = 0.43301240726617429, PCG_tol = 0.043301240726617431, PCG_iters = 200, PCG_converged = 1, g*dx = -0.259848519772857, warmstart = 0, hessian_update = 1, rel_obj_decrease = 0.006459201818740691 iter = 6, f(x) = 19.668998269445801, t = 1 (tmax=1), #ls = 0, constraint_violation = 8.8214030973105268e-16, |reduced grad| = 0.039873165403365052, PCG_tol = 0.003987316540336505, PCG_iters = 222, PCG_converged = 1, g*dx = -0.0034846293493440319, warmstart = 0, hessian_update = 1, rel_obj_decrease = 8.9127841760066817e-05 converged, f(x) = 19.668998269445801, ||gz|| = 0.039873165403365052, g*dx = -0.0034846293493440319, max_constraint_violation = 8.8214030973105268e-16, PCG_iters = 222 ######## NP-Timings ######## total time : 2.73344s total time NP : 1.78353s (65.24873 %) eval_f time : 0.08714s ( #evals: 14 -> avg 0.00622s ) eval_grad time: 0.07164s ( #evals: 7 -> avg 0.01023s, factor: 1.64422) eval_hess time: 1.62475s ( #evals: 4 -> avg 0.40619s, factor: 65.25629) --- final energies complete --- AMIPS = 38.98208 (#elements = 15349) AMIPS_TinyAD = 38.98208 (#elements = 15349) LogDet = 28688.92016 (#elements = 15349) FrameFit = 0.68624 (#elements = 138141) SymmetricDirichlet = 8.17665 (#elements = 15349) DihedralAngle = 83265.06064 (#elements = 92094) EdgeAlignment = 0.00000 (#elements = 1780) FaceAlignment = 0.00000 (#elements = 3792) Integrability = 3.41790 (#elements = 178500) Frame Smoothness = 8.07445 (#elements = 267750) sum = 112052.30021 --- final energies selected --- SymmetricDirichlet = 8.17665 (#elements = 15349) Integrability = 3.41790 (#elements = 178500) Frame Smoothness = 8.07445 (#elements = 267750) sum = 19.66900 ------------------------------- #####Optimize Frame Field regularized... ---------- Check Valence/Transition Functions consistency ------------- #invalid sectors = 0 ---------- Validity of Valence/Transition Functions = 1 ------------- Min frame rotation angle: 0.00269 Max frame rotation angle: 29.03914 largest angles 29.03914, 28.66723, 28.60198, 28.50412, 28.22804, 27.84843, 27.81601, 27.54546, 27.44776, 27.21391, 27.18265, 27.08912, 26.74696, 26.67229, 26.62639, 26.62055, 26.55829, 26.54228, 26.52604, 26.50396, 26.48287, 26.45807, 26.44170, 26.41791, 26.25308, 26.23735, 26.22373, 26.16512, 26.15958, 26.15240, --- initial energies complete --- AMIPS = 3.07853 (#elements = 15349) AMIPS_TinyAD = 3.07853 (#elements = 15349) LogDet = 15.35668 (#elements = 15349) FrameFit = 0.00000 (#elements = 138141) SymmetricDirichlet = 2.30291 (#elements = 15349) DihedralAngle = 83265.06064 (#elements = 92094) EdgeAlignment = 0.00000 (#elements = 1780) FaceAlignment = 0.00000 (#elements = 3792) Integrability = 127.34096 (#elements = 178500) Frame Smoothness = 2.94397 (#elements = 267750) sum = 83419.16223 --- initial energies selected --- SymmetricDirichlet = 2.30291 (#elements = 15349) Integrability = 127.34096 (#elements = 178500) Frame Smoothness = 2.94397 (#elements = 267750) sum = 132.58784 ------------------------------- ||x0|| = 145.66959 tolerance = 1.37297 optimize via TruncatedNewtonProjectedNormalEquationsPCG with 138141 unknowns and 5572 linear constraints initial inf-norm constraint violation = 8.8214237218851663e-16 numerically feasible = 1 initial objective value = 132.58784160211331 prepare constraint projection ... done! iter = 0, f(x) = 13.986529322814981, t = 1 (tmax=1), #ls = 0, constraint_violation = 8.8213707825441293e-16, |reduced grad| = 55.125128716507049, PCG_tol = 5.5125128716507055, PCG_iters = 16, PCG_converged = 1, g*dx = -237.28121992502099, warmstart = 0, hessian_update = 1, rel_obj_decrease = 0.89451122249363124 iter = 1, f(x) = 11.03997464460801, t = 0.96304668767562063 (tmax=0.96304668767562063), #ls = 0, constraint_violation = 8.8182328537471672e-16, |reduced grad| = 5.3176211619764011, PCG_tol = 0.53176211619764013, PCG_iters = 193, PCG_converged = 1, g*dx = -8.2229345945201811, warmstart = 0, hessian_update = 0, rel_obj_decrease = 0.210670896989471 iter = 2, f(x) = 9.6968702298461711, t = 0.59999999999999998 (tmax=1), #ls = 1, constraint_violation = 1.0620096872038081e-15, |reduced grad| = 0.62602077064122597, PCG_tol = 0.062602077064122602, PCG_iters = 493, PCG_converged = 1, g*dx = -6.3176647820968679, warmstart = 0, hessian_update = 0, rel_obj_decrease = 0.12165828799415039 iter = 3, f(x) = 9.281215384345856, t = 0.59999999999999998 (tmax=1), #ls = 1, constraint_violation = 1.1253310110266128e-15, |reduced grad| = 0.60730131733357096, PCG_tol = 0.060730131733357097, PCG_iters = 793, PCG_converged = 1, g*dx = -1.3784984279569581, warmstart = 0, hessian_update = 0, rel_obj_decrease = 0.042864845630393562 iter = 4, f(x) = 9.22107686581462, t = 1 (tmax=1), #ls = 0, constraint_violation = 1.1460206166044787e-15, |reduced grad| = 0.31768453880037217, PCG_tol = 0.031768453880037219, PCG_iters = 1093, PCG_converged = 1, g*dx = -0.11800279172320058, warmstart = 0, hessian_update = 1, rel_obj_decrease = 0.0064795951867110515 iter = 5, f(x) = 9.2210151722218541, t = 0.046655999999999996 (tmax=1), #ls = 6, constraint_violation = 1.1552258795328577e-15, |reduced grad| = 0.035946549228341014, PCG_tol = 0.0035946549228341017, PCG_iters = 1267, PCG_converged = 1, g*dx = -0.0041582629124409477, warmstart = 1, hessian_update = 1, rel_obj_decrease = 6.6904976136457502e-06 converged, f(x) = 9.2210151722218541, ||gz|| = 0.035946549228341014, g*dx = -0.0041582629124409477, max_constraint_violation = 1.1552258795328577e-15, PCG_iters = 1267 ######## NP-Timings ######## total time : 7.08867s total time NP : 1.48308s (20.92180 %) eval_f time : 0.10073s ( #evals: 15 -> avg 0.00672s ) eval_grad time: 0.06402s ( #evals: 6 -> avg 0.01067s, factor: 1.58880) eval_hess time: 1.31833s ( #evals: 3 -> avg 0.43944s, factor: 65.43745) --- final energies complete --- AMIPS = 2.90526 (#elements = 15349) AMIPS_TinyAD = 2.90526 (#elements = 15349) LogDet = 16327.46592 (#elements = 15349) FrameFit = 0.71353 (#elements = 138141) SymmetricDirichlet = 3.26155 (#elements = 15349) DihedralAngle = 37276.72030 (#elements = 92094) EdgeAlignment = 0.00000 (#elements = 1780) FaceAlignment = 0.00000 (#elements = 3792) Integrability = 0.30397 (#elements = 178500) Frame Smoothness = 5.65550 (#elements = 267750) sum = 53619.93129 --- final energies selected --- SymmetricDirichlet = 3.26155 (#elements = 15349) Integrability = 0.30397 (#elements = 178500) Frame Smoothness = 5.65550 (#elements = 267750) sum = 9.22102 ------------------------------- #####Optimize Frame Field regularized... ---------- Check Valence/Transition Functions consistency ------------- #invalid sectors = 0 ---------- Validity of Valence/Transition Functions = 1 ------------- Min frame rotation angle: 0.00233 Max frame rotation angle: 29.11754 largest angles 29.11754, 27.59632, 27.20060, 27.03957, 27.00150, 26.93062, 26.77224, 26.58661, 26.52354, 26.22894, 26.14714, 25.99112, 25.98841, 25.89913, 25.83280, 25.75257, 25.72129, 25.71765, 25.70933, 25.70903, 25.70481, 25.64671, 25.59405, 25.58931, 25.58242, 25.56781, 25.49586, 25.49278, 25.46181, 25.45947, --- initial energies complete --- AMIPS = 0.81437 (#elements = 15349) AMIPS_TinyAD = 0.81437 (#elements = 15349) LogDet = 15.35668 (#elements = 15349) FrameFit = 0.00000 (#elements = 138141) SymmetricDirichlet = 1.08914 (#elements = 15349) DihedralAngle = 37276.72030 (#elements = 92094) EdgeAlignment = 0.00000 (#elements = 1780) FaceAlignment = 0.00000 (#elements = 3792) Integrability = 6.27534 (#elements = 178500) Frame Smoothness = 1.09678 (#elements = 267750) sum = 37302.16699 --- initial energies selected --- SymmetricDirichlet = 1.08914 (#elements = 15349) Integrability = 6.27534 (#elements = 178500) Frame Smoothness = 1.09678 (#elements = 267750) sum = 8.46126 ------------------------------- ||x0|| = 91.10179 tolerance = 2.19535 optimize via TruncatedNewtonProjectedNormalEquationsPCG with 138141 unknowns and 5572 linear constraints initial inf-norm constraint violation = 1.1552612893205635e-15 numerically feasible = 1 initial objective value = 8.4612630684231185 prepare constraint projection ... done! iter = 0, f(x) = 2.5122383129279369, t = 1 (tmax=1), #ls = 0, constraint_violation = 1.1348073596452959e-15, |reduced grad| = 45.956380463610998, PCG_tol = 4.5956380463611, PCG_iters = 19, PCG_converged = 1, g*dx = -11.898106339362224, warmstart = 0, hessian_update = 1, rel_obj_decrease = 0.70308944508492521 iter = 1, f(x) = 2.0600342881691955, t = 1 (tmax=1), #ls = 0, constraint_violation = 1.1413289974161858e-15, |reduced grad| = 4.2673114741351661, PCG_tol = 0.42673114741351664, PCG_iters = 319, PCG_converged = 1, g*dx = -0.89427664884867619, warmstart = 0, hessian_update = 0, rel_obj_decrease = 0.18000044917383309 iter = 2, f(x) = 1.9839609438859727, t = 0.59999999999999998 (tmax=1), #ls = 1, constraint_violation = 1.1358183959793811e-15, |reduced grad| = 0.97649000418171905, PCG_tol = 0.097649000418171913, PCG_iters = 619, PCG_converged = 1, g*dx = -0.31076080271997547, warmstart = 1, hessian_update = 0, rel_obj_decrease = 0.036928193244215937 iter = 3, f(x) = 1.7975032401638986, t = 1 (tmax=1), #ls = 0, constraint_violation = 1.1357604877061933e-15, |reduced grad| = 2.4959569244277584, PCG_tol = 0.24959569244277585, PCG_iters = 919, PCG_converged = 1, g*dx = -0.3720802873479771, warmstart = 0, hessian_update = 1, rel_obj_decrease = 0.093982547537886721 iter = 4, f(x) = 1.7829084871106091, t = 0.35999999999999999 (tmax=1), #ls = 2, constraint_violation = 1.1400264250642385e-15, |reduced grad| = 0.91574248487791954, PCG_tol = 0.091574248487791957, PCG_iters = 1219, PCG_converged = 1, g*dx = -0.091704207881679059, warmstart = 1, hessian_update = 1, rel_obj_decrease = 0.0081194585507165656 converged, f(x) = 1.7829084871106091, ||gz|| = 0.91574248487791954, g*dx = -0.091704207881679059, max_constraint_violation = 1.1400264250642385e-15, PCG_iters = 1219 ######## NP-Timings ######## total time : 6.23626s total time NP : 1.39381s (22.35013 %) eval_f time : 0.05342s ( #evals: 9 -> avg 0.00594s ) eval_grad time: 0.05950s ( #evals: 5 -> avg 0.01190s, factor: 2.00492) eval_hess time: 1.28088s ( #evals: 3 -> avg 0.42696s, factor: 71.92879) --- final energies complete --- AMIPS = 0.20811 (#elements = 15349) AMIPS_TinyAD = 0.20811 (#elements = 15349) LogDet = 1685.57532 (#elements = 15349) FrameFit = 0.11415 (#elements = 138141) SymmetricDirichlet = 0.38581 (#elements = 15349) DihedralAngle = 11527.71622 (#elements = 92094) EdgeAlignment = 0.00000 (#elements = 1780) FaceAlignment = 0.00000 (#elements = 3792) Integrability = 0.01254 (#elements = 178500) Frame Smoothness = 1.38456 (#elements = 267750) sum = 13215.60482 --- final energies selected --- SymmetricDirichlet = 0.38581 (#elements = 15349) Integrability = 0.01254 (#elements = 178500) Frame Smoothness = 1.38456 (#elements = 267750) sum = 1.78291 ------------------------------- #####Optimize Frame Field regularized... ---------- Check Valence/Transition Functions consistency ------------- #invalid sectors = 0 ---------- Validity of Valence/Transition Functions = 1 ------------- Min frame rotation angle: 0.00425 Max frame rotation angle: 30.52499 largest angles 30.52499, 28.19312, 27.99821, 27.77402, 27.68900, 27.46348, 27.44899, 27.31108, 27.31088, 27.19419, 27.15762, 26.85956, 26.83889, 26.81843, 26.58596, 26.48093, 26.41651, 26.33927, 26.30086, 26.19938, 26.07119, 25.94650, 25.77436, 25.76138, 25.63020, 25.61728, 25.61485, 25.58540, 25.53138, 25.42794, --- initial energies complete --- AMIPS = 0.19087 (#elements = 15349) AMIPS_TinyAD = 0.19087 (#elements = 15349) LogDet = 15.35668 (#elements = 15349) FrameFit = 0.00000 (#elements = 138141) SymmetricDirichlet = 0.34444 (#elements = 15349) DihedralAngle = 11527.71622 (#elements = 92094) EdgeAlignment = 0.00000 (#elements = 1780) FaceAlignment = 0.00000 (#elements = 3792) Integrability = 0.13663 (#elements = 178500) Frame Smoothness = 0.14796 (#elements = 267750) sum = 11544.08368 --- initial energies selected --- SymmetricDirichlet = 0.34444 (#elements = 15349) Integrability = 0.13663 (#elements = 178500) Frame Smoothness = 0.14796 (#elements = 267750) sum = 0.62904 ------------------------------- ||x0|| = 82.81352 tolerance = 2.41506 optimize via TruncatedNewtonProjectedNormalEquationsPCG with 138141 unknowns and 5572 linear constraints initial inf-norm constraint violation = 1.1790034931650924e-15 numerically feasible = 1 initial objective value = 0.6290371712390429 prepare constraint projection ... done! iter = 0, f(x) = 0.49532635994631025, t = 1 (tmax=1), #ls = 0, constraint_violation = 1.1527162562113608e-15, |reduced grad| = 14.464297154840155, PCG_tol = 1.4464297154840156, PCG_iters = 87, PCG_converged = 1, g*dx = -0.26742158846997394, warmstart = 0, hessian_update = 1, rel_obj_decrease = 0.21256424485910178 iter = 1, f(x) = 0.35187900030605213, t = 1 (tmax=1), #ls = 0, constraint_violation = 1.1650293406988509e-15, |reduced grad| = 1.4103068478725709, PCG_tol = 0.14103068478725708, PCG_iters = 387, PCG_converged = 1, g*dx = -0.26833480127064085, warmstart = 0, hessian_update = 0, rel_obj_decrease = 0.28960170756066117 iter = 2, f(x) = 0.34186832878508244, t = 0.59999999999999998 (tmax=1), #ls = 1, constraint_violation = 1.198947099758468e-15, |reduced grad| = 1.3171451071591194, PCG_tol = 0.13171451071591195, PCG_iters = 687, PCG_converged = 1, g*dx = -0.077184044921714864, warmstart = 1, hessian_update = 0, rel_obj_decrease = 0.028449187113362119 converged, f(x) = 0.34186832878508244, ||gz|| = 1.3171451071591194, g*dx = -0.077184044921714864, max_constraint_violation = 1.198947099758468e-15, PCG_iters = 687 ######## NP-Timings ######## total time : 3.24673s total time NP : 0.55915s (17.22203 %) eval_f time : 0.03085s ( #evals: 5 -> avg 0.00617s ) eval_grad time: 0.03168s ( #evals: 3 -> avg 0.01056s, factor: 1.71173) eval_hess time: 0.49663s ( #evals: 1 -> avg 0.49663s, factor: 80.50381) --- final energies complete --- AMIPS = 0.06520 (#elements = 15349) AMIPS_TinyAD = 0.06520 (#elements = 15349) LogDet = -467.45982 (#elements = 15349) FrameFit = 0.05771 (#elements = 138141) SymmetricDirichlet = 0.12590 (#elements = 15349) DihedralAngle = 4391.91119 (#elements = 92094) EdgeAlignment = 0.00000 (#elements = 1780) FaceAlignment = 0.00000 (#elements = 3792) Integrability = 0.00265 (#elements = 178500) Frame Smoothness = 0.21332 (#elements = 267750) sum = 3924.98135 --- final energies selected --- SymmetricDirichlet = 0.12590 (#elements = 15349) Integrability = 0.00265 (#elements = 178500) Frame Smoothness = 0.21332 (#elements = 267750) sum = 0.34187 ------------------------------- #####Optimize Frame Field regularized... ---------- Check Valence/Transition Functions consistency ------------- #invalid sectors = 0 ---------- Validity of Valence/Transition Functions = 1 ------------- Min frame rotation angle: 0.00389 Max frame rotation angle: 31.02386 largest angles 31.02386, 28.45669, 27.76506, 27.73370, 27.71958, 27.34864, 27.28263, 27.28121, 27.26291, 27.18869, 26.97776, 26.90311, 26.80160, 26.70045, 26.66260, 26.51831, 26.47850, 26.47304, 26.39061, 26.37462, 26.21946, 26.16789, 26.15771, 26.04912, 25.83386, 25.82165, 25.72496, 25.70364, 25.64470, 25.59128, --- initial energies complete --- AMIPS = 0.05866 (#elements = 15349) AMIPS_TinyAD = 0.05866 (#elements = 15349) LogDet = 15.35668 (#elements = 15349) FrameFit = 0.00000 (#elements = 138141) SymmetricDirichlet = 0.10985 (#elements = 15349) DihedralAngle = 4391.91119 (#elements = 92094) EdgeAlignment = 0.00000 (#elements = 1780) FaceAlignment = 0.00000 (#elements = 3792) Integrability = 0.02595 (#elements = 178500) Frame Smoothness = 0.00000 (#elements = 267750) sum = 4407.52098 --- initial energies selected --- SymmetricDirichlet = 0.10985 (#elements = 15349) Integrability = 0.02595 (#elements = 178500) Frame Smoothness = 0.00000 (#elements = 267750) sum = 0.13580 ------------------------------- ||x0|| = 82.55777 tolerance = 2.42255 optimize via TruncatedNewtonProjectedNormalEquationsPCG with 138141 unknowns and 5572 linear constraints initial inf-norm constraint violation = 1.2155520024642836e-15 numerically feasible = 1 initial objective value = 0.13580165225845606 prepare constraint projection ... done! iter = 0, f(x) = 0.11005089562626851, t = 1 (tmax=1), #ls = 0, constraint_violation = 1.2111975383952407e-15, |reduced grad| = 14.716713667048708, PCG_tol = 1.4716713667048709, PCG_iters = 99, PCG_converged = 1, g*dx = -0.051501512270379322, warmstart = 0, hessian_update = 1, rel_obj_decrease = 0.18962034852992085 converged, f(x) = 0.11005089562626851, ||gz|| = 14.716713667048708, g*dx = -0.051501512270379322, max_constraint_violation = 1.2111975383952407e-15, PCG_iters = 99 ######## NP-Timings ######## total time : 0.91907s total time NP : 0.52117s (56.70664 %) eval_f time : 0.01225s ( #evals: 2 -> avg 0.00612s ) eval_grad time: 0.00982s ( #evals: 1 -> avg 0.00982s, factor: 1.60402) eval_hess time: 0.49910s ( #evals: 1 -> avg 0.49910s, factor: 81.49918) --- final energies complete --- AMIPS = 0.05865 (#elements = 15349) AMIPS_TinyAD = 0.05865 (#elements = 15349) LogDet = 15.27456 (#elements = 15349) FrameFit = 0.00000 (#elements = 138141) SymmetricDirichlet = 0.10983 (#elements = 15349) DihedralAngle = 4391.29785 (#elements = 92094) EdgeAlignment = 0.00000 (#elements = 1780) FaceAlignment = 0.00000 (#elements = 3792) Integrability = 0.00022 (#elements = 178500) Frame Smoothness = 0.00000 (#elements = 267750) sum = 4406.79975 --- final energies selected --- SymmetricDirichlet = 0.10983 (#elements = 15349) Integrability = 0.00022 (#elements = 178500) Frame Smoothness = 0.00000 (#elements = 267750) sum = 0.11005 ------------------------------- #####Optimize Frame Field regularized... ---------- Check Valence/Transition Functions consistency ------------- #invalid sectors = 0 ---------- Validity of Valence/Transition Functions = 1 ------------- Min frame rotation angle: 0.00390 Max frame rotation angle: 31.02420 largest angles 31.02420, 28.44556, 27.75397, 27.72790, 27.71998, 27.33494, 27.25639, 27.25502, 27.24635, 27.17306, 26.95219, 26.89174, 26.78903, 26.68084, 26.64853, 26.52429, 26.46167, 26.45496, 26.38155, 26.37117, 26.20876, 26.15886, 26.14433, 26.03803, 25.81799, 25.81491, 25.72376, 25.71024, 25.63503, 25.57277, --- initial energies complete --- AMIPS = 0.05865 (#elements = 15349) AMIPS_TinyAD = 0.05865 (#elements = 15349) LogDet = 15.35668 (#elements = 15349) FrameFit = 0.00000 (#elements = 138141) SymmetricDirichlet = 0.10983 (#elements = 15349) DihedralAngle = 4391.29785 (#elements = 92094) EdgeAlignment = 0.00000 (#elements = 1780) FaceAlignment = 0.00000 (#elements = 3792) Integrability = 0.00221 (#elements = 178500) Frame Smoothness = 0.00000 (#elements = 267750) sum = 4406.88385 --- initial energies selected --- SymmetricDirichlet = 0.10983 (#elements = 15349) Integrability = 0.00221 (#elements = 178500) Frame Smoothness = 0.00000 (#elements = 267750) sum = 0.11204 ------------------------------- ||x0|| = 82.55765 tolerance = 2.42255 optimize via TruncatedNewtonProjectedNormalEquationsPCG with 138141 unknowns and 5572 linear constraints initial inf-norm constraint violation = 1.1834419627796117e-15 numerically feasible = 1 initial objective value = 0.11203744812806855 prepare constraint projection ... done! iter = 0, f(x) = 0.10984109460773499, t = 1 (tmax=1), #ls = 0, constraint_violation = 1.199674407375514e-15, |reduced grad| = 13.995772321611906, PCG_tol = 1.3995772321611906, PCG_iters = 108, PCG_converged = 1, g*dx = -0.0043927070122686245, warmstart = 0, hessian_update = 1, rel_obj_decrease = 0.019603744614237757 converged, f(x) = 0.10984109460773499, ||gz|| = 13.995772321611906, g*dx = -0.0043927070122686245, max_constraint_violation = 1.199674407375514e-15, PCG_iters = 108 ######## NP-Timings ######## total time : 0.94998s total time NP : 0.51695s (54.41748 %) eval_f time : 0.01154s ( #evals: 2 -> avg 0.00577s ) eval_grad time: 0.01020s ( #evals: 1 -> avg 0.01020s, factor: 1.76690) eval_hess time: 0.49522s ( #evals: 1 -> avg 0.49522s, factor: 85.82634) --- final energies complete --- AMIPS = 0.05864 (#elements = 15349) AMIPS_TinyAD = 0.05864 (#elements = 15349) LogDet = 15.33913 (#elements = 15349) FrameFit = 0.00000 (#elements = 138141) SymmetricDirichlet = 0.10983 (#elements = 15349) DihedralAngle = 4391.16928 (#elements = 92094) EdgeAlignment = 0.00000 (#elements = 1780) FaceAlignment = 0.00000 (#elements = 3792) Integrability = 0.00001 (#elements = 178500) Frame Smoothness = 0.00000 (#elements = 267750) sum = 4406.73554 --- final energies selected --- SymmetricDirichlet = 0.10983 (#elements = 15349) Integrability = 0.00001 (#elements = 178500) Frame Smoothness = 0.00000 (#elements = 267750) sum = 0.10984 ------------------------------- ---------- Check Valence/Transition Functions consistency ------------- #invalid sectors = 0 ---------- Validity of Valence/Transition Functions = 1 ------------- Min frame rotation angle: 0.00390 Max frame rotation angle: 31.02306 largest angles 31.02306, 28.44245, 27.74999, 27.72572, 27.71903, 27.33006, 27.25495, 27.25359, 27.24650, 27.17031, 26.94530, 26.88765, 26.78383, 26.67653, 26.64845, 26.52296, 26.46189, 26.45045, 26.38063, 26.37144, 26.20409, 26.15790, 26.14449, 26.03320, 25.81591, 25.81439, 25.72181, 25.71031, 25.63556, 25.57193, #####Parametrizing (complete pipeline)... #####Parametrizing... #quantization path constraints = 0 Warning: COMISOSolver received a problem with non-constant hessian!!! Initital dimension: 10617 x 10617, number of constraints: 2567, number of integer variables: 0, use reordering: yes integer variables #: 0 continuous variables #: 8050 Timings: Gauss Elimination 0.0040330000000000001 s System Elimination 0.025330000000000002 s Mi-Solver 0.074939000000000006 s Resubstitution 0.0011619999999999998 s Total 0.105464 -----------> parametrization finished with #invalid_tets = 0 and #invalid_edge_valencies = 0 degeneracy sequence: (#inv-tets = 0#inv-edges = 0) Info: Parameterizing using robust quantization-based pipeline. import_frames_from_parametrization... #####Parametrizing (robust quantization pipeline)... sizing scale factor for quantization = 1.00000 Mesh Info: 0 inverted and 0 degenerate cells with volume min = 0.115194 max = 36.711 INPUT: #Identity Transitions = 30821 and #Non-Identity = 825 Max change in Parametrization = 0.000000 Total Alignment Faces: 1896 and cut Faces = 825 and identity 28925 Total singular Edges: 259 and feature edges: 0 INFO: Misaligned singular edges: 70 INFO: Misaligned feature edges: 0 INFO: Alignment Faces: 905 INFO: 3499 vertices not seamless across 643 cut faces and 1 identity faces Nodes = 21 Sectors = 35 Total Branches = 30 Total Sheets = 11 (align = 6 and cut = 5) Invalid sheets (not enough nodes on them) = 1 Adding extra nodes and Refilling Total Branches = 31 Total Sheets = 11 (align = 6 and cut = 5) Setting EQUATION SYSTEM Overall equations: 110 x 120 entries(non-zero elements):2.36364% : 332 IREF: running time: 0.243689 ms IRREF: running time: 0.127134 ms absolute largest value : 2 entries:4.90152% : 647 non-zero elements:2.33333% : 308 evaluation: running time: 0.059072 ms C_ij max input error = 0.00000000000000711 non zero output entries: 0 max change via precision fixing = 0.00000000000000355 Compute Final Transitions Fill values in Nodes Fill values in boundary Branches Fill values in non-branch Boundary-Sheet vertices Fill values in non-branch Sheet vertices Fill values in singular Branches Fill values in rest of cut Branches Done : Filled new values Overall running time: 266.795 ms Max change in Parametrization = 0.000000 Output is Truly Seamless! Mesh Info: 0 inverted and 0 degenerate cells with volume min = 0.115194 max = 36.711 WARNING: Logging before InitGoogleLogging() is written to STDERR I20240305 10:24:45.202822 400709 Quantizer.cpp:140] Sanitization successful I20240305 10:24:45.386286 400709 SingularityInitializer.cpp:26] Determined nonzero transition functions for 825 of 31646 faces I20240305 10:24:45.470415 400709 SingularityInitializer.cpp:74] Found 259 singular edges out of 19441 total edges I20240305 10:24:45.544234 400709 MCGenerator.cpp:62] Tracing the motorcycle complex I20240305 10:24:45.544267 400709 MCGenerator.cpp:63] ...avoiding toroidal blocks in the process I20240305 10:24:45.544270 400709 MCGenerator.cpp:64] ...avoiding selfadjacent blocks in the process I20240305 10:24:56.631665 400709 MCBuilder.cpp:57] 1 selfadjacent blocks encountered during block discovery! I20240305 10:24:56.631721 400709 MCGenerator.cpp:99] Splitting selfadjacent blocks. 1 remaining I20240305 10:24:57.842077 400709 MCBuilder.cpp:97] Building the motorcycle complex structure on the basis of an OVM::PolyMesh I20240305 10:24:58.157749 400709 MCGenerator.cpp:121] Tracing and connecting the raw motorcycle complex was successful, raw MC has 9 blocks and 42 walls. I20240305 10:24:58.157977 400709 MCGenerator.cpp:130] Starting to reduce raw MC with 9 blocks and 42 walls. I20240305 10:24:58.158071 400709 MCGenerator.cpp:139] Reduced MC to 9 blocks and 42 walls. [franco-precision7560:400709] *** Process received signal *** [franco-precision7560:400709] Signal: Segmentation fault (11) [franco-precision7560:400709] Signal code: Address not mapped (1) [franco-precision7560:400709] Failing at address: (nil) [franco-precision7560:400709] [ 0] /lib/x86_64-linux-gnu/libc.so.6(+0x42520)[0x7ffa4c842520] [franco-precision7560:400709] [ 1] /home/franco/Programs/AlgoHex/build/Build/lib/libQGP3D.so.1.0(_ZN5Eigen8internal17product_evaluatorINS_7ProductINS_12SparseMatrixIdLi0EiEENS_3MapIKNS_6MatrixIdLin1ELi1ELi0ELin1ELi1EEELi0ENS_6StrideILi0ELi0EEEEELi0EEELi7ENS_11SparseShapeENS_10DenseShapeEddEC2ERKSC_+0x148)[0x7ffa4d8c3848] [franco-precision7560:400709] [ 2] /home/franco/Programs/AlgoHex/build/Build/lib/libQGP3D.so.1.0(_ZN4impl19QuantizationProblem11eval_grad_fEiPKdbPd+0x3f)[0x7ffa4d8bbc1f] [franco-precision7560:400709] [ 3] /opt/coin-or/lib/libbonmin.so.0(_ZNK6Bonmin18OsiTMINLPInterface18getObjCoefficientsEv+0x94)[0x7ffa4c38ce84] [franco-precision7560:400709] [ 4] /lib/x86_64-linux-gnu/libCbc.so.3(_ZN8CbcModel9setCutoffEd+0xcb)[0x7ffa4e18633b] [franco-precision7560:400709] [ 5] /opt/coin-or/lib/libbonmin.so.0(_ZN6Bonmin3Bab14branchAndBoundERNS_12BabSetupBaseE+0x42c)[0x7ffa4c338cac] [franco-precision7560:400709] [ 6] /home/franco/Programs/AlgoHex/build/Build/lib/libQGP3D.so.1.0(_ZN5qgp3d11MCQuantizer18quantizeArcLengthsEdbb+0x10f9)[0x7ffa4d8a2a89] [franco-precision7560:400709] [ 7] /home/franco/Programs/AlgoHex/build/Build/lib/libQGP3D.so.1.0(_ZN5qgp3d9Quantizer8quantizeEdRSt6vectorINS_14PathConstraintESaIS2_EERi+0x1b4c)[0x7ffa4d8ee0fc] [franco-precision7560:400709] [ 8] /home/franco/Programs/AlgoHex/build/Build/bin/HexMeshing(+0x4c8a83)[0x563ec1cfba83] [franco-precision7560:400709] [ 9] /home/franco/Programs/AlgoHex/build/Build/bin/HexMeshing(+0x48f0bf)[0x563ec1cc20bf] [franco-precision7560:400709] [10] /home/franco/Programs/AlgoHex/build/Build/bin/HexMeshing(+0x128e40)[0x563ec195be40] [franco-precision7560:400709] [11] /home/franco/Programs/AlgoHex/build/Build/bin/HexMeshing(+0x96852)[0x563ec18c9852] [franco-precision7560:400709] [12] /home/franco/Programs/AlgoHex/build/Build/bin/HexMeshing(+0x4e49dd)[0x563ec1d179dd] [franco-precision7560:400709] [13] /lib/x86_64-linux-gnu/libc.so.6(+0x29d90)[0x7ffa4c829d90] [franco-precision7560:400709] [14] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80)[0x7ffa4c829e40] [franco-precision7560:400709] [15] /home/franco/Programs/AlgoHex/build/Build/bin/HexMeshing(+0x95f65)[0x563ec18c8f65] [franco-precision7560:400709] *** End of error message ***