-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreate_synthpro_validation_data.py
executable file
·355 lines (259 loc) · 11.5 KB
/
create_synthpro_validation_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#!/usr/bin/env python2.7
"""
Script to calculate "model truth" quantities for use when
benchmarking different gridding/mapping methodologies.
"""
import argparse
from netCDF4 import Dataset
import os
from synthpro.synthpro import *
class ArgError(Exception):
pass
def get_args():
""" Get arguments from command line. """
parser = argparse.ArgumentParser(
description='Generates "model truth" data sets for benchmarking of profile mapping methods')
parser.add_argument(
'month', type=int, help='Month used in file names.')
parser.add_argument(
'year', type=int, help='Year used in file names.')
parser.add_argument(
'namelist', type=str, help='Path to namelist.ini')
parser.add_argument(
'basins', type=str, help='Path to netcdf file containing basin masks')
parser.add_argument(
'mesh', type=str, help='Path to netcdf file containing ocean mesh information')
parser.add_argument(
'-d', '--day', type=int, help='Day used in file names [def=None].', default=None)
parser.add_argument(
'--outdir', type=str, help='Directory to save data [def=./].', default='./')
parser.add_argument(
'--bmdi', type=int, help='Missing data indicator for basin masks [def=0]', default=0)
parser.add_argument(
'--basinvars', type=str, help=('Space-delimited string of variable names for basin masks '+
'[def="global n_hemisphere s_hemisphere arctic atlantic indian pacific southern"]'),
default='global n_hemisphere s_hemisphere arctic atlantic indian pacific southern')
parser.add_argument(
'--meshvars', type=str, help='Space-delimited string of variable names for cell dimensions [def="e1t e2t e3t"]',
default='e1t e2t e3t')
parser.add_argument(
'--rhocp', type=float, help='Rho*Cp, constant used for calculation of ocean heat content [def=4091688.0].',
default=4091688.0)
parser.add_argument('--layer_thickness', type=float, help='Layer thickness, m, for ocean heat content calculations [def=100].',
default=100.)
parser.add_argument('--time_dim', type=str, help='Name of time dimension in input netcdf files[def=time_counter].',
default='time_counter')
parser.add_argument('--time_var', type=str, help='Name of time variable in input netcdf files [def=time_counter].',
default='time_counter')
parser.add_argument('--depth_dim', type=str, help='Name of depth dimension in input netcdf files [def=deptht].',
default='deptht')
parser.add_argument('--depth_var', type=str, help='Name of depth variable in input netcdf files [def=deptht].',
default='deptht')
args = parser.parse_args()
return args
def get_meshvars(args):
""" Return list of mesh variable names """
mvars = args.meshvars.split()
nvars = len(mvars)
if nvars != 3:
raise ArgError('"%s" is an invalid argument to meshvars. Try --meshvars "[dxvar] [dyvar] [dzvar]"'
% args.meshvars)
return mvars
def get_basinvars(args):
""" Return list of basin variable names """
bvars = args.basinvars.split()
nvars = len(bvars)
if nvars == 0:
raise ArgError('"%s" is an invalid argument to basinvars. Try --meshvars "basin1 basin2 ..."'
% args.basinvars)
return bvars
def load_var(fname, readFunc, varname):
""" Load mesh data """
dat = readFunc(varname, fname)
return np.squeeze(dat)
def load_basinmask(args, modelDat, basinvar):
""" Load basin mask """
mask = load_var(args.basins, modelDat.read_var, basinvar)
mask = mask == args.bmdi
return mask
def calc_area_avgs(args, modelDat, dx, dy, bmask):
""" Calculate area averages on each model level """
nz = modelDat.data.shape[0]
avgs = []
for k in range(nz):
dat = modelDat.data[k]
dat = np.ma.MaskedArray(dat, mask=(bmask | dat.mask ))
areas = np.ma.MaskedArray(dx * dy, mask=(bmask | dat.mask))
avgs.append((dat * areas).sum() / areas.sum())
avgs = np.array(avgs)
avgs = np.ma.MaskedArray(avgs, mask=np.isnan(avgs))
return avgs
def calc_vol_integrals(args, modelDat, dx, dy, dz, bmask):
""" Calculate volume integrals on each model level """
nz = modelDat.data.shape[0]
vints = []
for k in range(nz):
dat = modelDat.data[k]
dat = np.ma.MaskedArray(dat, mask=(bmask | dat.mask ))
vols = np.ma.MaskedArray(dx * dy * dz[k], mask=(bmask | dat.mask))
vints.append((dat * vols).sum())
vints = np.array(vints)
vints = np.ma.MaskedArray(vints, mask=np.isnan(vints))
return vints
def calc_depth_bounds(zthick):
""" Return depth coordinate bounds calculated from layer thicknesses """
bounds = []
for k in range(len(zthick)):
if k == 0:
bounds.append([0, zthick[k]])
else:
upper = bounds[k-1][1]
bounds.append([upper, upper + zthick[k]])
return bounds
def create_layers(model_dz, layer_dz):
""" Return layers for ocean heat content calculations """
zupper = np.arange(np.int(model_dz.sum()/layer_dz) + 1) * layer_dz
zlower = zupper + layer_dz
layers = [[zu, zl] for zu,zl in zip(zupper, zlower)]
return layers
def calc_overlap(a, b):
""" Return range of overlap between two arrays. """
max_of_mins = max(min(a), min(b))
min_of_maxs = min(max(a), max(b))
if max_of_mins >= min_of_maxs:
overlap_range = None
else:
overlap_range = [max_of_mins, min_of_maxs]
return overlap_range
def calc_zfrac(zthick, minz, maxz):
"""
Return fraction of each vertical level that
falls within minz and maxz.
"""
bounds = calc_depth_bounds(zthick)
zfrac = []
for bound in bounds:
overlap = calc_overlap(bound, [minz, maxz])
if overlap is not None:
wt = ( (max(overlap) - min(overlap)) /
(max(bound) - min(bound)) )
else:
wt = 0
zfrac.append(wt)
return np.array(zfrac)
def calc_layer_ohc(args, tint, dz):
"""
Calculate ocean heat content within specific layers from
volume integrated temperature on each model level.
"""
zthick = np.apply_over_axes(np.median, dz, [1,2]).squeeze()
layers = create_layers(zthick, args.layer_thickness)
layer_ohc = []
for layer in layers:
wts = calc_zfrac(zthick, layer[0], layer[1])
layer_ohc.append(np.sum(wts * tint) * args.rhocp)
return layers, np.array(layer_ohc)
def copy_ncdim(ncin, ncout, dim_name):
""" Copy dimension from ncin to ncout """
dimin = ncin.dimensions[dim_name]
dimout = ncout.createDimension(
dim_name, len(dimin) if not dimin.isunlimited() else None)
def copy_ncvar(ncin, ncout, var_name):
""" Copy variables from ncin to ncout """
varin = ncin.variables[var_name]
varout = ncout.createVariable(var_name, varin.dtype, varin.dimensions)
varout.setncatts( { k: varin.getncattr(k) for k in varin.ncattrs() } )
varout[:] = varin[:]
def create_savename(args, fin, basin, varname):
""" Create filename for output netcdf """
outname = fin.split('/')[-1].replace('.nc', '.%s_%s.nc' % (basin, varname))
outdir = '%s%s/' % (args.outdir, basin)
fout = outdir + outname
try:
os.makedirs(outdir)
except OSError:
if not os.path.isdir(outdir):
raise IOError
return fout
def write_data_modelz(args, config, varname, basin, dat, units=None):
""" Write data on model depth levels to netcdf """
# Associate data
fin = config.get('model_temp', 'file_name')
ncin = Dataset(fin)
fout = create_savename(args, fin, basin, varname)
ncout = Dataset(fout, 'w')
printmsg.message(config, 'Writing: %s' % fout)
# Copy time and depth variables
copy_ncdim(ncin, ncout, args.time_dim)
copy_ncdim(ncin, ncout, args.depth_dim)
copy_ncvar(ncin, ncout, args.time_var)
copy_ncvar(ncin, ncout, args.depth_var)
# Add data variable
varout = ncout.createVariable(varname, 'float64', (args.time_dim, args.depth_dim))
varout[:] = dat.reshape((1,len(dat)))
if units is not None:
varout.setncatts({'units': units})
# Close files
ncout.close()
ncin.close()
def write_data_layers(args, config, varname, basin, layers, dat, units=None):
""" Write data on specified layers to netcdf """
# Associate data
fin = config.get('model_temp', 'file_name')
ncin = Dataset(fin)
fout = create_savename(args, fin, basin, varname)
ncout = Dataset(fout, 'w')
printmsg.message(config, 'Writing: %s' % fout)
# Extract bounds information
ubounds = np.array([bound[0] for bound in layers])
lbounds = np.array([bound[1] for bound in layers])
# Copy time and depth variables
copy_ncdim(ncin, ncout, args.time_dim)
copy_ncvar(ncin, ncout, args.time_var)
zDim = ncout.createDimension('layers', len(ubounds))
uzvar = ncout.createVariable('upper_boundary', 'float64', ('layers',))
uzvar[:] = ubounds
uzvar.setncatts({'units': 'm'})
lzvar = ncout.createVariable('lower_boundary', 'float64', ('layers',))
lzvar[:] = lbounds
lzvar.setncatts({'units': 'm'})
# Add data variable
varout = ncout.createVariable(varname, 'float64', (args.time_dim, 'layers'))
varout[:] = dat.reshape((1,len(dat)))
if units is not None:
varout.setncatts({'units': units})
# Close files
ncout.close()
ncin.close()
if __name__ == '__main__':
# Load arguments
args = get_args()
dxvar, dyvar, dzvar = get_meshvars(args)
basinvars = get_basinvars(args)
# Build paths to input data files
config = namelist.get_namelist(args)
config = tools.build_file_name(args, config, 'model_temp')
config = tools.build_file_name(args, config, 'model_sal')
# Load model data
printmsg.message(config, 'Loading input data...')
modelTemp = model.assoc_model(config, 'model_temp')
modelSal = model.assoc_model(config, 'model_sal')
# Load mesh data
dx = load_var(args.mesh, modelTemp.read_var, dxvar)
dy = load_var(args.mesh, modelTemp.read_var, dyvar)
dz = load_var(args.mesh, modelTemp.read_var, dzvar)
# Calculate metrics for each basin
for basinvar in basinvars:
printmsg.message(config, 'Calculating %s metrics...' % basinvar)
bmask = load_basinmask(args, modelTemp, basinvar)
tavg = calc_area_avgs(args, modelTemp, dx, dy, bmask)
savg = calc_area_avgs(args, modelSal, dx, dy, bmask)
tint = calc_vol_integrals(args, modelTemp, dx, dy, dz, bmask)
sint = calc_vol_integrals(args, modelSal, dx, dy, dz, bmask)
layers, ohc = calc_layer_ohc(args, tint, dz)
printmsg.message(config, 'Saving %s metrics...' % basinvar)
write_data_modelz(args, config, 'area_avg_temperature', basinvar, tavg, units='C')
write_data_modelz(args, config, 'area_avg_salinity', basinvar, savg, units='psu')
write_data_modelz(args, config, 'vol_integrated_temperature', basinvar, tint, units='C*m3')
write_data_modelz(args, config, 'vol_integrated_salinity', basinvar, sint, units='psu*m3')
write_data_layers(args, config, 'ocean_heat_content', basinvar, layers, ohc, units='J')