forked from arneschneuing/DiffSBDD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
process_crossdock.py
448 lines (368 loc) · 16.9 KB
/
process_crossdock.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
from pathlib import Path
from time import time
import argparse
import shutil
import random
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import numpy as np
from Bio.PDB import PDBParser
from Bio.PDB.Polypeptide import three_to_one, is_aa
from rdkit import Chem
from scipy.ndimage import gaussian_filter
import torch
from analysis.molecule_builder import build_molecule
from analysis.metrics import rdmol_to_smiles
import constants
from constants import covalent_radii, dataset_params
def process_ligand_and_pocket(pdbfile, sdffile,
atom_dict, dist_cutoff, ca_only):
pdb_struct = PDBParser(QUIET=True).get_structure('', pdbfile)
try:
ligand = Chem.SDMolSupplier(str(sdffile))[0]
except:
raise Exception(f'cannot read sdf mol ({sdffile})')
# remove H atoms if not in atom_dict, other atom types that aren't allowed
# should stay so that the entire ligand can be removed from the dataset
lig_atoms = [a.GetSymbol() for a in ligand.GetAtoms()
if (a.GetSymbol().capitalize() in atom_dict or a.element != 'H')]
lig_coords = np.array([list(ligand.GetConformer(0).GetAtomPosition(idx))
for idx in range(ligand.GetNumAtoms())])
try:
lig_one_hot = np.stack([
np.eye(1, len(atom_dict), atom_dict[a.capitalize()]).squeeze()
for a in lig_atoms
])
except KeyError as e:
raise KeyError(
f'{e} not in atom dict ({sdffile})')
# Find interacting pocket residues based on distance cutoff
pocket_residues = []
for residue in pdb_struct[0].get_residues():
res_coords = np.array([a.get_coord() for a in residue.get_atoms()])
if is_aa(residue.get_resname(), standard=True) and \
(((res_coords[:, None, :] - lig_coords[None, :, :]) ** 2).sum(
-1) ** 0.5).min() < dist_cutoff:
pocket_residues.append(residue)
pocket_ids = [f'{res.parent.id}:{res.id[1]}' for res in pocket_residues]
ligand_data = {
'lig_coords': lig_coords,
'lig_one_hot': lig_one_hot,
}
if ca_only:
try:
pocket_one_hot = []
full_coords = []
for res in pocket_residues:
for atom in res.get_atoms():
if atom.name == 'CA':
pocket_one_hot.append(np.eye(1, len(amino_acid_dict),
amino_acid_dict[three_to_one(res.get_resname())]).squeeze())
full_coords.append(atom.coord)
pocket_one_hot = np.stack(pocket_one_hot)
full_coords = np.stack(full_coords)
except KeyError as e:
raise KeyError(
f'{e} not in amino acid dict ({pdbfile}, {sdffile})')
pocket_data = {
'pocket_coords': full_coords,
'pocket_one_hot': pocket_one_hot,
'pocket_ids': pocket_ids
}
else:
full_atoms = np.concatenate(
[np.array([atom.element for atom in res.get_atoms()])
for res in pocket_residues], axis=0)
full_coords = np.concatenate(
[np.array([atom.coord for atom in res.get_atoms()])
for res in pocket_residues], axis=0)
try:
pocket_one_hot = []
for a in full_atoms:
if a in amino_acid_dict:
atom = np.eye(1, len(amino_acid_dict),
amino_acid_dict[a.capitalize()]).squeeze()
elif a != 'H':
atom = np.eye(1, len(amino_acid_dict),
len(amino_acid_dict)).squeeze()
pocket_one_hot.append(atom)
pocket_one_hot = np.stack(pocket_one_hot)
except KeyError as e:
raise KeyError(
f'{e} not in atom dict ({pdbfile})')
pocket_data = {
'pocket_coords': full_coords,
'pocket_one_hot': pocket_one_hot,
'pocket_ids': pocket_ids
}
return ligand_data, pocket_data
def compute_smiles(positions, one_hot, mask):
print("Computing SMILES ...")
atom_types = np.argmax(one_hot, axis=-1)
sections = np.where(np.diff(mask))[0] + 1
positions = [torch.from_numpy(x) for x in np.split(positions, sections)]
atom_types = [torch.from_numpy(x) for x in np.split(atom_types, sections)]
mols_smiles = []
pbar = tqdm(enumerate(zip(positions, atom_types)),
total=len(np.unique(mask)))
for i, (pos, atom_type) in pbar:
mol = build_molecule(pos, atom_type, dataset_info)
mol = rdmol_to_smiles(mol)
if mol is not None:
mols_smiles.append(mol)
pbar.set_description(f'{len(mols_smiles)}/{i + 1} successful')
return mols_smiles
def get_n_nodes(lig_mask, pocket_mask, smooth_sigma=None):
# Joint distribution of ligand's and pocket's number of nodes
idx_lig, n_nodes_lig = np.unique(lig_mask, return_counts=True)
idx_pocket, n_nodes_pocket = np.unique(pocket_mask, return_counts=True)
assert np.all(idx_lig == idx_pocket)
joint_histogram = np.zeros((np.max(n_nodes_lig) + 1,
np.max(n_nodes_pocket) + 1))
for nlig, npocket in zip(n_nodes_lig, n_nodes_pocket):
joint_histogram[nlig, npocket] += 1
print(f'Original histogram: {np.count_nonzero(joint_histogram)}/'
f'{joint_histogram.shape[0] * joint_histogram.shape[1]} bins filled')
# Smooth the histogram
if smooth_sigma is not None:
filtered_histogram = gaussian_filter(
joint_histogram, sigma=smooth_sigma, order=0, mode='constant',
cval=0.0, truncate=4.0)
print(f'Smoothed histogram: {np.count_nonzero(filtered_histogram)}/'
f'{filtered_histogram.shape[0] * filtered_histogram.shape[1]} bins filled')
joint_histogram = filtered_histogram
return joint_histogram
def get_bond_length_arrays(atom_mapping):
bond_arrays = []
for i in range(3):
bond_dict = getattr(constants, f'bonds{i + 1}')
bond_array = np.zeros((len(atom_mapping), len(atom_mapping)))
for a1 in atom_mapping.keys():
for a2 in atom_mapping.keys():
if a1 in bond_dict and a2 in bond_dict[a1]:
bond_len = bond_dict[a1][a2]
else:
bond_len = 0
bond_array[atom_mapping[a1], atom_mapping[a2]] = bond_len
assert np.all(bond_array == bond_array.T)
bond_arrays.append(bond_array)
return bond_arrays
def get_lennard_jones_rm(atom_mapping):
# Bond radii for the Lennard-Jones potential
LJ_rm = np.zeros((len(atom_mapping), len(atom_mapping)))
for a1 in atom_mapping.keys():
for a2 in atom_mapping.keys():
all_bond_lengths = []
for btype in ['bonds1', 'bonds2', 'bonds3']:
bond_dict = getattr(constants, btype)
if a1 in bond_dict and a2 in bond_dict[a1]:
all_bond_lengths.append(bond_dict[a1][a2])
if len(all_bond_lengths) > 0:
# take the shortest possible bond length because slightly larger
# values aren't penalized as much
bond_len = min(all_bond_lengths)
else:
if a1 == 'others' or a2 == 'others':
bond_len = 0
else:
# Replace missing values with sum of average covalent radii
bond_len = covalent_radii[a1] + covalent_radii[a2]
LJ_rm[atom_mapping[a1], atom_mapping[a2]] = bond_len
assert np.all(LJ_rm == LJ_rm.T)
return LJ_rm
def get_type_histograms(lig_one_hot, pocket_one_hot, atom_encoder, aa_encoder):
atom_decoder = list(atom_encoder.keys())
atom_counts = {k: 0 for k in atom_encoder.keys()}
for a in [atom_decoder[x] for x in lig_one_hot.argmax(1)]:
atom_counts[a] += 1
aa_decoder = list(aa_encoder.keys())
aa_counts = {k: 0 for k in aa_encoder.keys()}
for r in [aa_decoder[x] for x in pocket_one_hot.argmax(1)]:
aa_counts[r] += 1
return atom_counts, aa_counts
def saveall(filename, pdb_and_mol_ids, lig_coords, lig_one_hot, lig_mask,
pocket_coords, pocket_one_hot, pocket_mask):
np.savez(filename,
names=pdb_and_mol_ids,
lig_coords=lig_coords,
lig_one_hot=lig_one_hot,
lig_mask=lig_mask,
pocket_coords=pocket_coords,
pocket_one_hot=pocket_one_hot,
pocket_mask=pocket_mask
)
return True
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('basedir', type=Path)
parser.add_argument('--outdir', type=Path, default=None)
parser.add_argument('--no_H', action='store_true')
parser.add_argument('--ca_only', action='store_true')
parser.add_argument('--dist_cutoff', type=float, default=8.0)
parser.add_argument('--random_seed', type=int, default=42)
args = parser.parse_args()
datadir = args.basedir / 'crossdocked_pocket10/'
if args.ca_only:
dataset_info = dataset_params['crossdock']
else:
dataset_info = dataset_params['crossdock_full']
amino_acid_dict = dataset_info['aa_encoder']
atom_dict = dataset_info['atom_encoder']
atom_decoder = dataset_info['atom_decoder']
# Make output directory
if args.outdir is None:
suffix = '_crossdock' if 'H' in atom_dict else '_crossdock_noH'
suffix += '_ca_only_temp' if args.ca_only else '_full_temp'
processed_dir = Path(args.basedir, f'processed{suffix}')
else:
processed_dir = args.outdir
processed_dir.mkdir(exist_ok=True, parents=True)
# Read data split
split_path = Path(args.basedir, 'split_by_name.pt')
data_split = torch.load(split_path)
# There is no validation set, copy 300 training examples (the validation set
# is not very important in this application)
# Note: before we had a data leak but it should not matter too much as most
# metrics monitored during training are independent of the pockets
data_split['val'] = random.sample(data_split['train'], 300)
n_train_before = len(data_split['train'])
n_val_before = len(data_split['val'])
n_test_before = len(data_split['test'])
failed_save = []
n_samples_after = {}
for split in data_split.keys():
lig_coords = []
lig_one_hot = []
lig_mask = []
pocket_coords = []
pocket_one_hot = []
pocket_mask = []
pdb_and_mol_ids = []
count_protein = []
count_ligand = []
count_total = []
count = 0
pdb_sdf_dir = processed_dir / split
pdb_sdf_dir.mkdir(exist_ok=True)
tic = time()
num_failed = 0
pbar = tqdm(data_split[split])
pbar.set_description(f'#failed: {num_failed}')
for pocket_fn, ligand_fn in pbar:
sdffile = datadir / f'{ligand_fn}'
pdbfile = datadir / f'{pocket_fn}'
try:
struct_copy = PDBParser(QUIET=True).get_structure('', pdbfile)
except:
num_failed += 1
failed_save.append((pocket_fn, ligand_fn))
print(failed_save[-1])
pbar.set_description(f'#failed: {num_failed}')
continue
try:
ligand_data, pocket_data = process_ligand_and_pocket(
pdbfile, sdffile,
atom_dict=atom_dict, dist_cutoff=args.dist_cutoff,
ca_only=args.ca_only)
except (KeyError, AssertionError, FileNotFoundError, IndexError,
ValueError) as e:
print(type(e).__name__, e, pocket_fn, ligand_fn)
num_failed += 1
pbar.set_description(f'#failed: {num_failed}')
continue
pdb_and_mol_ids.append(f"{pocket_fn}_{ligand_fn}")
lig_coords.append(ligand_data['lig_coords'])
lig_one_hot.append(ligand_data['lig_one_hot'])
lig_mask.append(count * np.ones(len(ligand_data['lig_coords'])))
pocket_coords.append(pocket_data['pocket_coords'])
pocket_one_hot.append(pocket_data['pocket_one_hot'])
pocket_mask.append(
count * np.ones(len(pocket_data['pocket_coords'])))
count_protein.append(pocket_data['pocket_coords'].shape[0])
count_ligand.append(ligand_data['lig_coords'].shape[0])
count_total.append(pocket_data['pocket_coords'].shape[0] +
ligand_data['lig_coords'].shape[0])
count += 1
if split in {'val', 'test'}:
# Copy PDB file
new_rec_name = Path(pdbfile).stem.replace('_', '-')
pdb_file_out = Path(pdb_sdf_dir, f"{new_rec_name}.pdb")
shutil.copy(pdbfile, pdb_file_out)
# Copy SDF file
new_lig_name = new_rec_name + '_' + Path(sdffile).stem.replace('_', '-')
sdf_file_out = Path(pdb_sdf_dir, f'{new_lig_name}.sdf')
shutil.copy(sdffile, sdf_file_out)
# specify pocket residues
with open(Path(pdb_sdf_dir, f'{new_lig_name}.txt'), 'w') as f:
f.write(' '.join(pocket_data['pocket_ids']))
lig_coords = np.concatenate(lig_coords, axis=0)
lig_one_hot = np.concatenate(lig_one_hot, axis=0)
lig_mask = np.concatenate(lig_mask, axis=0)
pocket_coords = np.concatenate(pocket_coords, axis=0)
pocket_one_hot = np.concatenate(pocket_one_hot, axis=0)
pocket_mask = np.concatenate(pocket_mask, axis=0)
saveall(processed_dir / f'{split}.npz', pdb_and_mol_ids, lig_coords,
lig_one_hot, lig_mask, pocket_coords,
pocket_one_hot, pocket_mask)
n_samples_after[split] = len(pdb_and_mol_ids)
print(f"Processing {split} set took {(time() - tic) / 60.0:.2f} minutes")
# --------------------------------------------------------------------------
# Compute statistics & additional information
# --------------------------------------------------------------------------
with np.load(processed_dir / 'train.npz', allow_pickle=True) as data:
lig_mask = data['lig_mask']
pocket_mask = data['pocket_mask']
lig_coords = data['lig_coords']
lig_one_hot = data['lig_one_hot']
pocket_one_hot = data['pocket_one_hot']
# Compute SMILES for all training examples
train_smiles = compute_smiles(lig_coords, lig_one_hot, lig_mask)
np.save(processed_dir / 'train_smiles.npy', train_smiles)
# Joint histogram of number of ligand and pocket nodes
n_nodes = get_n_nodes(lig_mask, pocket_mask, smooth_sigma=1.0)
np.save(Path(processed_dir, 'size_distribution.npy'), n_nodes)
# Convert bond length dictionaries to arrays for batch processing
bonds1, bonds2, bonds3 = get_bond_length_arrays(atom_dict)
# Get bond length definitions for Lennard-Jones potential
rm_LJ = get_lennard_jones_rm(atom_dict)
# Get histograms of ligand and pocket node types
atom_hist, aa_hist = get_type_histograms(lig_one_hot, pocket_one_hot,
atom_dict, amino_acid_dict)
# Create summary string
summary_string = '# SUMMARY\n\n'
summary_string += '# Before processing\n'
summary_string += f'num_samples train: {n_train_before}\n'
summary_string += f'num_samples val: {n_val_before}\n'
summary_string += f'num_samples test: {n_test_before}\n\n'
summary_string += '# After processing\n'
summary_string += f"num_samples train: {n_samples_after['train']}\n"
summary_string += f"num_samples val: {n_samples_after['val']}\n"
summary_string += f"num_samples test: {n_samples_after['test']}\n\n"
summary_string += '# Info\n'
summary_string += f"'atom_encoder': {atom_dict}\n"
summary_string += f"'atom_decoder': {list(atom_dict.keys())}\n"
summary_string += f"'aa_encoder': {amino_acid_dict}\n"
summary_string += f"'aa_decoder': {list(amino_acid_dict.keys())}\n"
summary_string += f"'bonds1': {bonds1.tolist()}\n"
summary_string += f"'bonds2': {bonds2.tolist()}\n"
summary_string += f"'bonds3': {bonds3.tolist()}\n"
summary_string += f"'lennard_jones_rm': {rm_LJ.tolist()}\n"
summary_string += f"'atom_hist': {atom_hist}\n"
summary_string += f"'aa_hist': {aa_hist}\n"
summary_string += f"'n_nodes': {n_nodes.tolist()}\n"
sns.distplot(count_protein)
plt.savefig(processed_dir / 'protein_size_distribution.png')
plt.clf()
sns.distplot(count_ligand)
plt.savefig(processed_dir / 'lig_size_distribution.png')
plt.clf()
sns.distplot(count_total)
plt.savefig(processed_dir / 'total_size_distribution.png')
plt.clf()
# Write summary to text file
with open(processed_dir / 'summary.txt', 'w') as f:
f.write(summary_string)
# Print summary
print(summary_string)
print(failed_save)