-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupp tables.Rmd
211 lines (177 loc) · 6.97 KB
/
supp tables.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
title: "supplementary tables"
output: html_notebook
---
# libraries
```{r}
library(tidyverse)
library(lubridate) # wrangling with dates
library(scales) # vectors and colour scaling
library(icd) # icd codes and comorbidities
library(haven)
# library(xlsx)
library(import) # namespace handling
```
# load
```{r}
# load modules
source("./scripts/import.R")
source("./scripts/data_import.R")
source("./scripts/icd.R")
source("./scripts/eda.R") # import the compare_19vs20 routine
# set input/output directory
data_dir <- "./data"
results_dir <- "./results"
if (!dir.exists(results_dir)) dir.create(results_dir)
```
# import
```{r}
### attendance records from stata file
stata = mclapply(list("AE_Attendance_transformed_20150101_20210917.csv"), import_csv, mc.cores=40)
stata = stata %>%
mutate(year = lubridate::year(eventdate),
eventdate = as.Date(eventdate)) %>%
filter(eventdate<max(eventdate)-28,
year != 2015)
```
# age and gender yearly attendance
```{r}
# age and gender filtering conditions
demo_conditions = c("age>= 65 & Sex_num == 1","age >= 65 & Sex_num == 0",
"age>=55 & age<65 & Sex_num==1","age>=55 & age<65 & Sex_num==0",
"age>=45 & age <55 & Sex_num==1","age>=45 & age <55 & Sex_num==0",
"age>=35 & age <45 & Sex_num==1","age>=35 & age <45 & Sex_num==0",
"age>=18 & age <35 & Sex_num==1","age>=18 & age <35 & Sex_num==0",
"age>=0 & age <18 & Sex_num==1","age>=0 & age <18 & Sex_num==0")
# age and gender filtering conditions in readable form
demo_conditionsTextual = c("65+ & M","65+ & F",
"55-64 & M","55-64 & F",
"45-54 & M","45-54 & F",
"35-44 & M","35-44 & F",
"18-34 & M","18-34 & F",
"0-17 & M","0-17 & F")
# concat strings in dplyr-readable form
conditions = paste(paste0(demo_conditions,"~\"",demo_conditionsTextual,"\";"),collapse ='')
df = stata %>%
select(eventdate, year, death, age, Sex_num) %>%
mutate(cond=case_when(
!!! rlang::parse_exprs(conditions)
))
results = compare_yearly(df, dates.2021 = dates.2021)
age_gender_attn = results[[2]] %>%
filter(ctrltrt == "ctrl", death==-1) %>%
select(-ctrltrt, -death) %>%
arrange(year)
write_xlsx(age_gender_attn, path = file.path(results_dir,"age_gender_attn.xlsx"))
```
# define wave dates date.df
```{r}
# merge with wave settings
wave.df <- import_waves(twosls = T)
date.df <- import_dates(wave.df=wave.df,
start = min(selected$eventdate),
end=max(selected$eventdate))
# impute after-wave periods
date.df = date.df %>%
mutate(wave_num = ifelse(is.na(wave_num) & date>min(wave.df$start),"after-wave",wave_num))%>%
mutate(wave_num = ifelse(date<min(wave.df$start),0,wave_num))
```
# age and gender wave/non-wave attendance
```{r}
df = stata %>%
select(eventdate, year, death, age, Sex_num) %>%
mutate(cond=case_when(
!!! rlang::parse_exprs(conditions)
))
results = compare_waves(df = df, date.df = date.df)
age_gender_attn_wave = results %>%
filter(!is.na(wave_num)) %>%
select(-attn.y)
age_gender_attn_wave
write_xlsx(age_gender_attn_wave, path = file.path(results_dir,"age_gender_wave_attn.xlsx"))
```
# 65+ RCHE/non-RCHE Wave/non-wave attendance
```{r}
# age and gender filtering conditions
demo_conditions = c("age>= 65 & old_home == \"Y\"","age >= 65 & old_home == \"N\"")
# age and gender filtering conditions in readable form
demo_conditionsTextual = c("65+ RCHE","65+ non-RCHE")
# concat strings in dplyr-readable form
conditions = paste(paste0(demo_conditions,"~\"",demo_conditionsTextual,"\";"),collapse ='')
df = stata %>%
select(eventdate, year, death, age, old_home) %>%
mutate(cond=case_when(
!!! rlang::parse_exprs(conditions)
)) %>%
filter(!is.na(cond))
results = compare_waves(df = df, date.df = date.df)
results
rche_attn_wave = results %>%
filter(!is.na(wave_num) | wave_num != 0) %>%
select(-attn.y)
rche_attn_wave
write_xlsx(rche_attn_wave, path = file.path(results_dir,"rche_attn_wave.xlsx"))
```
# 65+ DOA/DBA Wave/non-wave deaths
```{r}
# get wave 5 aka 2021 wave 4 dates; OR
# get waves 1-4 aka 2020 wave 1-4 dates
wave.dates <- import_waves() %>%
filter(year == 2020) %>%
import_dates() %>%
filter(wave_num %in% c(1,2,3,4),
year==2020) %>%
mutate(date = yday(date)) %>%
pull(date)
df = stata %>%
filter(age >= 65,
year < 2021) %>%
select(old_home, year, eventdate, death, doadba) %>%
mutate(demographic = ifelse(yday(eventdate) %in% wave.dates, "2020 Wave", "2020 Non-wave"))
results = compare_yearly(df = df, group.by = c("doadba", "demographic"), trtyrs = c(2020))
wave_elderly_df = results [[2]] %>%
filter(ctrltrt == "ctrl",
death==1) %>%
select(-ctrltrt, -death)
wave_elderly_df
write_xlsx(wave_elderly_df, path = "./results/wave_elderly_doadba_20.xlsx")
```
# 65+ DOA/DBA RCHE/non-RCHE deaths
```{r}
df = stata %>%
filter(age >= 65) %>%
select(old_home, year, eventdate, death, doadba)
results = compare_yearly(df, group.by = c("doadba", "old_home"), dates.2021 = dates.2021)
rche_df = results [[2]] %>%
filter(ctrltrt == "ctrl",
death==1) %>%
select(-ctrltrt, -death)
write_xlsx(rche_df, path = "./results/rche_doadba.xlsx")
```
# 65+ M&F time lag estimated excess death
```{r}
# 2021 vs 2019
tabs7 = ivreg_models %>% filter(cond == "65+", gender =="F") %>% mutate(estimate = -estimate * 20585,
conf.high = -conf.high * 20585,
conf.low = -conf.low * 20585)
tabs7 = bind_rows(tabs7, ivreg_models %>% filter(cond == "65+", gender =="M") %>% mutate(estimate = -estimate * 17016,
conf.high = -conf.high * 17016,
conf.low = -conf.low * 17016))
tabs7 = tabs7 %>%
select(time_lag, gender, estimate, conf.low, conf.high) %>%
mutate_if(is.numeric, funs(signif(.,3))) %>%
mutate(year=2021)
# 2020 vs 2019
tabs7.19 = ivreg_models %>% filter(cond == "65+", gender =="F") %>% mutate(estimate = -estimate * 84163,
conf.high = -conf.high * 84163,
conf.low = -conf.low * 84163)
tabs7.19 = bind_rows(tabs7.19, ivreg_models %>% filter(cond == "65+", gender =="M") %>% mutate(estimate = -estimate * 61957,
conf.high = -conf.high * 61957,
conf.low = -conf.low * 61957))
tabs7.19 = tabs7.19 %>%
select(time_lag, gender, estimate, conf.low, conf.high) %>%
mutate_if(is.numeric, funs(signif(.,3))) %>%
mutate(year=2020)
tabs7 = bind_rows(tabs7, tabs7.19)
write.xlsx(tabs7, file = file.path(results_dir, "65plus_excess_death_absestimate.xlsx"))
```