-
Notifications
You must be signed in to change notification settings - Fork 235
/
Copy pathbase.py
682 lines (614 loc) · 23.8 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
import os
import gc
import warnings
import torch
import transformers
import torch.nn as nn
from tqdm import tqdm
from typing import List, Union, Dict
from typing_extensions import Doc, Annotated
from huggingface_hub import snapshot_download, save_torch_state_dict
from awq.modules.linear import (
WQLinear_GEMM,
WQLinear_GEMV,
WQLinear_IPEX,
WQLinear_Marlin,
WQLinear_Exllama,
WQLinear_ExllamaV2,
WQLinear_GEMVFast,
marlin_post_init,
exllama_post_init,
exllamav2_post_init,
ipex_post_init,
)
from awq.utils.module import (
get_named_linears,
set_op_by_name,
exclude_layers_to_not_quantize,
try_import,
)
from awq.utils.utils import get_best_device, ipex_available
from transformers import (
AutoConfig,
PreTrainedModel,
PretrainedConfig,
AutoProcessor,
BaseImageProcessor,
PreTrainedTokenizer,
)
from accelerate.big_modeling import (
init_empty_weights,
load_checkpoint_and_dispatch,
)
from awq.models._config import AwqConfig
from awq.modules.act import ScaledActivation
from awq.quantize.quantizer import AwqQuantizer
from awq.utils.module import get_named_linears, set_op_by_name
# Since we support different `AutoModelForxxx` from transformers
# we need to define a custom mapping dict as below:
TRANSFORMERS_AUTO_MAPPING_DICT = {
"mpt": "AutoModelForCausalLM",
"llama": "AutoModelForCausalLM",
"opt": "AutoModelForCausalLM",
"RefinedWeb": "AutoModelForCausalLM",
"RefinedWebModel": "AutoModelForCausalLM",
"exaone": "AutoModelForCausalLM",
"falcon": "AutoModelForCausalLM",
"bloom": "AutoModelForCausalLM",
"gptj": "AutoModelForCausalLM",
"gpt_bigcode": "AutoModelForCausalLM",
"mistral": "AutoModelForCausalLM",
"mixtral": "AutoModelForCausalLM",
"gpt_neox": "AutoModelForCausalLM",
"aquila": "AutoModelForCausalLM",
"Yi": "AutoModelForCausalLM",
"qwen": "AutoModelForCausalLM",
"baichuan": "AutoModelForCausalLM",
"llava": "AutoModelForVision2Seq",
"qwen2": "AutoModelForCausalLM",
"qwen2_vl": "AutoModelForVision2Seq",
"gemma": "AutoModelForCausalLM",
"gemma2": "AutoModelForCausalLM",
"stablelm": "AutoModelForCausalLM",
"starcoder2": "AutoModelForCausalLM",
"llava_next": "AutoModelForVision2Seq",
"phi3": "AutoModelForCausalLM",
"phi3_v": "AutoModelForCausalLM",
"cohere": "AutoModelForCausalLM",
"deepseek_v2": "AutoModelForCausalLM",
"minicpm": "AutoModelForCausalLM",
"minicpm3":"AutoModelForCausalLM",
"internlm2": "AutoModelForCausalLM",
"qwen2_vl": "AutoModelForVision2Seq",
}
class BaseAWQForCausalLM(nn.Module):
def __init__(
self,
model: Annotated[PreTrainedModel, Doc("The pretrained or quantized model.")],
model_type: Annotated[str, Doc("The model type, found in config.json.")],
is_quantized: Annotated[
bool, Doc("Indicates if the current model is quantized.")
],
config: Annotated[PretrainedConfig, Doc("The config of the model.")],
quant_config: Annotated[
AwqConfig, Doc("The quantization config of the model.")
],
processor: Annotated[
BaseImageProcessor, Doc("An optional processor, e.g. for vision models.")
],
):
"""The base model for all AutoAWQ models."""
super().__init__()
self.model: PreTrainedModel = model
self.model_type: str = model_type
self.is_quantized: bool = is_quantized
self.search_result = None
self.config: PretrainedConfig = config
self.quant_config: AwqConfig = quant_config
self.processor: BaseImageProcessor = processor
def to(self, device: Annotated[str, Doc("The device to move your model to.")]):
"""A utility function for moving the model to a device."""
return self.model.to(device)
def forward(self, *args, **kwargs):
"""A forward function that mimics the torch forward."""
return self.model(*args, **kwargs)
def generate(self, *args, **kwargs):
"""A generate function that mimics the HF generate function."""
with torch.inference_mode():
return self.model.generate(*args, **kwargs)
@torch.no_grad()
def quantize(
self,
tokenizer: Annotated[
PreTrainedTokenizer, Doc("The tokenizer to use for quantization.")
] = None,
quant_config: Annotated[
Dict, Doc("The quantization config you want to use.")
] = {},
calib_data: Annotated[
Union[str, List[str]],
Doc(
"The calibration dataset. Either a string pointing to Huggingface or a list of preloaded examples."
),
] = "pileval",
split: Annotated[str, Doc("The split of calib_data.")] = "train",
text_column: Annotated[str, Doc("The text column of calib_data.")] = "text",
duo_scaling: Annotated[
bool, Doc("Whether to scale using both w/x or just x.")
] = True,
export_compatible: Annotated[
bool,
Doc(
"This argument avoids real quantization by only applying the scales without quantizing down to FP16."
),
] = False,
apply_clip: Annotated[
bool,
Doc(
"Whether to apply clipping to the model during quantization. Some models may perform better with this set to False."
),
] = True,
n_parallel_calib_samples: Annotated[
int,
Doc(
"The number of parallel samples to run through the model. "
"A high number of parallel samples can result in OOM during quantization if max_calib_samples is high enough. "
"If None, runs through all samples at the same time. "
"You can set this to a low number for more memory efficient quantization."
),
] = None,
max_calib_samples: Annotated[
int, Doc("The maximum number of samples to run through the model.")
] = 128,
max_calib_seq_len: Annotated[
int,
Doc(
"The maximum sequence length of the calibration dataset. Discard samples greater than max_calib_seq_len."
),
] = 512,
max_chunk_memory: Annotated[
int,
Doc(
"The loss computation and per-channel mean is optimized into chunked computations."
" Adjust this parameter to increase or decrease memory usage for these computations."
" Default is 1GB (1024 * 1024 * 1024)."
),
] = 1024
* 1024
* 1024,
quantizer_cls: Annotated[
AwqQuantizer,
Doc("If you want to customize the quantization class, you can use AwqQuantizer as a base class.")
] = AwqQuantizer,
**kwargs,
):
"""
The main quantization function that you can use to quantize your model.
Example:
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
model_path = "..."
model = AutoAWQForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }
model.quantize(tokenizer, quant_config)
```
"""
self.quant_config: AwqConfig = AwqConfig.from_dict(quant_config)
if hasattr(self, "modules_to_not_convert"):
self.quant_config.modules_to_not_convert = self.modules_to_not_convert
self.quantizer = quantizer_cls(
self,
self.model,
tokenizer,
self.quant_config.w_bit,
self.quant_config.q_group_size,
self.quant_config.zero_point,
self.quant_config.version,
calib_data,
split,
text_column,
duo_scaling,
modules_to_not_convert=self.quant_config.modules_to_not_convert,
export_compatible=export_compatible,
apply_clip=apply_clip,
n_parallel_calib_samples=n_parallel_calib_samples,
max_calib_samples=max_calib_samples,
max_calib_seq_len=max_calib_seq_len,
max_chunk_memory=max_chunk_memory,
**kwargs,
)
self.quantizer.quantize()
self.is_quantized = True
@torch.no_grad()
def pack(self):
"""
A utility function for the following scenario. Note that save_quantized will
overwrite existing weights if you use the same quant_path.
Example:
```python
model.quantize(
tokenizer,
quant_config=quant_config,
export_compatible=True
)
model.save_quantized(...) # produces GGUF/other compat weights
model.pack(...) # makes the model CUDA compat
model.save_quantized(...) # produces CUDA compat weights
```
"""
self.quantizer.pack()
@staticmethod
def fuse_layers(model):
pass
def save_quantized(
self,
save_dir: Annotated[str, Doc("The directory to save your model to.")],
safetensors: Annotated[
bool, Doc("Whether to save the model as safetensors or torch files.")
] = True,
shard_size: Annotated[
str, Doc("The shard size for sharding large models into multiple chunks.")
] = "5GB",
):
save_dir = save_dir[:-1] if save_dir[-1] == "/" else save_dir
# Save model
class EmptyModule(nn.Module):
def __init__(self):
super(EmptyModule, self).__init__()
def forward(self, x):
return x
# Save model and config files with empty state dict
self.model.config.quantization_config = self.quant_config.to_transformers_dict()
self.model.generation_config.do_sample = True
self.model.save_pretrained(save_dir, state_dict=EmptyModule().state_dict())
# Vision transformers have a processor
if self.processor is not None:
self.processor.save_pretrained(save_dir)
# Remove empty state dict
default_paths = [
f"{save_dir}/model.safetensors",
f"{save_dir}/pytorch_model.bin",
]
for path in default_paths:
if os.path.exists(path):
os.remove(path)
save_torch_state_dict(
state_dict=self.model.state_dict(),
save_directory=save_dir,
max_shard_size=shard_size,
safe_serialization=safetensors,
force_contiguous=True,
)
@classmethod
def from_pretrained(
self,
model_path: Annotated[str, Doc("A Huggingface path or local path to a model.")],
model_type: Annotated[str, Doc("The model type, loaded from config.json.")],
torch_dtype: Annotated[
torch.dtype,
Doc(
"The dtype to load the model as. May not work with other values than float16."
),
] = torch.float16,
trust_remote_code: Annotated[
bool,
Doc(
"Useful for Huggingface repositories that have not been integrated into transformers yet."
),
] = True,
safetensors: Annotated[
bool, Doc("Whether to download/load safetensors instead of torch weights.")
] = True,
device_map: Annotated[
Union[str, Dict],
Doc(
"A device map that will be passed onto the model loading method from transformers."
),
] = "auto",
download_kwargs: Annotated[
Dict,
Doc("Used for configure download model"),
] = None,
**model_init_kwargs: Annotated[
Dict,
Doc(
"Additional kwargs that are passed to the model during initialization."
),
],
):
"""A method for initialization of pretrained models, usually in FP16."""
# Get weights path and quant config
model_weights_path, config, quant_config = self._load_config(
self,
model_path,
"",
safetensors,
trust_remote_code=trust_remote_code,
download_kwargs=download_kwargs,
)
target_cls_name = TRANSFORMERS_AUTO_MAPPING_DICT[config.model_type]
target_cls = getattr(transformers, target_cls_name)
processor = None
if target_cls_name == "AutoModelForVision2Seq":
processor = AutoProcessor.from_pretrained(model_weights_path)
# If not quantized, must load with AutoModelForCausalLM
model = target_cls.from_pretrained(
model_weights_path,
trust_remote_code=trust_remote_code,
torch_dtype=torch_dtype,
use_safetensors=safetensors,
device_map=device_map,
**model_init_kwargs,
)
model.eval()
return self(
model,
model_type,
is_quantized=False,
config=config,
quant_config=quant_config,
processor=processor,
)
@classmethod
def from_quantized(
self,
model_path: Annotated[str, Doc("A Huggingface path or local path to a model.")],
model_type: Annotated[str, Doc("The model type, loaded from config.json.")],
model_filename: Annotated[
str, Doc("Load a specific model's filename by specifying this argument.")
] = "",
max_seq_len: Annotated[
int,
Doc(
"The maximum sequence cached sequence length of the model. Larger values may increase loading time and memory usage."
),
] = None,
torch_dtype: Annotated[
torch.dtype,
Doc(
"The dtype to load the model as. May not work with other values than float16."
),
] = torch.float16,
trust_remote_code: Annotated[
bool,
Doc(
"Useful for Huggingface repositories that have not been integrated into transformers yet."
),
] = True,
safetensors: Annotated[
bool, Doc("Whether to download/load safetensors instead of torch weights.")
] = True,
fuse_layers: Annotated[
bool,
Doc(
"Whether to use fused/optimized combination of layers for increased speed."
),
] = True,
use_exllama: Annotated[
bool, Doc("Whether to map the weights to ExLlamaV1 kernels.")
] = False,
use_exllama_v2: Annotated[
bool, Doc("Whether to map the weights to ExLlamaV2 kernels.")
] = False,
use_ipex: Annotated[
bool, Doc("Whether to map the weights to ipex kernels for CPU and XPU device.")
] = False,
device_map: Annotated[
Union[str, Dict],
Doc(
"A device map that will be passed onto the model loading method from transformers."
),
] = "balanced",
max_memory: Annotated[
Dict[Union[int, str], Union[int, str]],
Doc(
'A dictionary device identifier to maximum memory which will be passed onto the model loading method from transformers. For example:{0: "4GB",1: "10GB"'
),
] = None,
offload_folder: Annotated[
str,
Doc("The folder ot offload the model to."),
] = None,
download_kwargs: Annotated[
Dict,
Doc("Used for configure download model"),
] = None,
**config_kwargs: Annotated[
Dict,
Doc(
"Additional kwargs that are passed to the config during initialization."
),
],
):
"""A method for initialization of a quantized model, usually in INT4."""
# [STEP 1-2] Load weights path and configs
model_weights_path, config, quant_config = self._load_config(
self,
model_path,
model_filename,
safetensors,
trust_remote_code,
max_seq_len=max_seq_len,
download_kwargs=download_kwargs,
**config_kwargs,
)
target_cls_name = TRANSFORMERS_AUTO_MAPPING_DICT[config.model_type]
target_cls = getattr(transformers, target_cls_name)
# [STEP 3] Load model
with init_empty_weights():
model = target_cls.from_config(
config=config,
torch_dtype=torch_dtype,
trust_remote_code=trust_remote_code,
)
best_device = get_best_device()
use_ipex = use_ipex or best_device in ["cpu", "xpu:0"]
if use_ipex and not ipex_available:
raise ImportError(
"Please install intel_extension_for_pytorch with "
"`pip install intel_extension_for_pytorch` for 'ipex' kernel!"
)
# Prepare WQLinear layers, replace nn.Linear
self._load_quantized_modules(
self,
model,
quant_config,
quant_config.version,
use_exllama=use_exllama,
use_exllama_v2=use_exllama_v2,
use_ipex=use_ipex,
)
model.tie_weights()
# loads the weights into modules and distributes
# across available devices automatically
load_checkpoint_and_dispatch(
model,
checkpoint=model_weights_path,
device_map=device_map,
max_memory=max_memory,
no_split_module_classes=[self.layer_type],
offload_folder=offload_folder,
dtype=torch_dtype,
)
# Dispath to devices
awq_ext, msg = try_import("awq_ext")
if fuse_layers:
if best_device in ["mps", "cuda:0"] and awq_ext is None:
warnings.warn("Skipping fusing modules because AWQ extension is not installed." + msg)
else:
self.fuse_layers(model)
if use_ipex:
# repack qweight to match the ipex kernel.
model = ipex_post_init(model)
elif quant_config.version == "marlin":
model = marlin_post_init(model)
elif use_exllama:
# creates q4 handle
model = exllama_post_init(model)
elif use_exllama_v2:
# creates q4 handle and allocates scratch spaces wrt max_input_len and max_batch_size
model = exllamav2_post_init(
model,
max_input_len=max_seq_len or 2048,
max_batch_size=int(os.getenv("AWQ_BATCH_SIZE", 1)),
)
model.eval()
return self(
model,
model_type,
is_quantized=True,
config=config,
quant_config=quant_config,
processor=None,
)
def _load_config(
self,
model_path,
model_filename,
safetensors=True,
trust_remote_code=True,
max_seq_len=4096,
download_kwargs=None,
**config_kwargs,
):
# [STEP 1] Download model if path is not a directory
if not os.path.isdir(model_path):
ignore_patterns = ["*msgpack*", "*h5*", "optimizer.pt", "*.onnx*"]
if safetensors:
ignore_patterns.extend(["*.pt*", "*.bin*", "consolidated*"])
else:
ignore_patterns.append("*.safetensors*")
if download_kwargs is None:
download_kwargs = {}
if "ignore_patterns" in download_kwargs:
download_kwargs_ignore_patterns = download_kwargs.pop("ignore_patterns")
if isinstance(download_kwargs_ignore_patterns, str):
ignore_patterns.append(download_kwargs_ignore_patterns)
elif isinstance(download_kwargs_ignore_patterns, list):
ignore_patterns.extend(download_kwargs_ignore_patterns)
model_path = snapshot_download(
model_path, ignore_patterns=ignore_patterns, **download_kwargs
)
if model_filename != "":
model_weights_path = model_path + f"/{model_filename}"
else:
model_weights_path = model_path
# [STEP 2] Load config and set sequence length
# TODO: Create BaseAWQConfig class
quant_config = AwqConfig.from_pretrained(model_path)
# Load model config and set max generation length
if max_seq_len is None and hasattr(self, "max_seq_len_key"):
config = AutoConfig.from_pretrained(
model_path, trust_remote_code=trust_remote_code, **config_kwargs
)
config.max_seq_len = getattr(config, self.max_seq_len_key, 2048)
# To add the generate support for Multi-modal models as well
if hasattr(config, "text_config"):
config.text_config.max_seq_len = getattr(
config, self.max_seq_len_key, 2048
)
else:
max_seq_len = 2048 if max_seq_len is None else max_seq_len
config = AutoConfig.from_pretrained(
model_path, trust_remote_code=trust_remote_code, **config_kwargs
)
config.max_seq_len = max_seq_len
return model_weights_path, config, quant_config
def _load_quantized_modules(
self, model, quant_config, version, use_exllama, use_exllama_v2, use_ipex=False
):
# Real quantization of weights
assert not (
version == "gemv" and (use_exllama or use_exllama_v2 or use_ipex)
), "Exllama kernels only support GEMM version."
# Get blocks of model
layers = self.get_model_layers(model)
for i in tqdm(range(len(layers)), desc="Replacing layers..."):
layer = layers[i]
# Get every linear layer in a block
named_linears = get_named_linears(layer)
# Filter out the linear layers we don't want to include
named_linears = exclude_layers_to_not_quantize(
named_linears, quant_config.modules_to_not_convert
)
# Replace activation functions
self._scale_activations(self, layer)
# Replace nn.Linear with WQLinear
for name, module in named_linears.items():
if use_ipex:
q_linear_module = WQLinear_IPEX
elif version == "marlin":
q_linear_module = WQLinear_Marlin
elif use_exllama:
q_linear_module = WQLinear_Exllama
elif use_exllama_v2:
q_linear_module = WQLinear_ExllamaV2
elif version == "gemm":
q_linear_module = WQLinear_GEMM
elif version == "gemv":
q_linear_module = WQLinear_GEMV
elif version == "gemv_fast":
q_linear_module = WQLinear_GEMVFast
q_linear = q_linear_module.from_linear(
module, quant_config.w_bit, quant_config.q_group_size, True
)
q_linear.to(next(layer.parameters()).device)
set_op_by_name(layer, name, q_linear)
if not use_ipex:
torch.cuda.empty_cache()
gc.collect()
@staticmethod
def _scale_activations(self, layer):
scale_dict = self.get_act_for_scaling(layer)
if scale_dict["is_scalable"]:
if not isinstance(scale_dict["scale_layer"], ScaledActivation):
param = next(layer.parameters())
# get activation scale
scale_like = torch.ones(
scale_dict["scale_shape"], dtype=param.dtype, device=param.device
)
# scale activation
scaled_act = ScaledActivation(scale_dict["scale_layer"], scale_like)
set_op_by_name(layer, scale_dict["scale_name"], scaled_act)