-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_convergence.py
841 lines (635 loc) · 24.5 KB
/
plot_convergence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
#
#
# 0=================================0
# | Kernel Point Convolutions |
# 0=================================0
#
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Callable script to test any model on any dataset
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Hugues THOMAS - 11/06/2018
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Imports and global variables
# \**********************************/
#
# Common libs
import os
import torch
import numpy as np
import matplotlib.pyplot as plt
from os.path import isfile, join, exists
from os import listdir, remove, getcwd
from sklearn.metrics import confusion_matrix
import time
# My libs
from utils.config import Config
from utils.metrics import IoU_from_confusions, smooth_metrics, fast_confusion
from utils.ply import read_ply
# Datasets
from datasets.ModelNet40 import ModelNet40Dataset
from datasets.S3DIS import S3DISDataset
from datasets.SemanticKitti import SemanticKittiDataset
from datasets.SoftwareNet import SoftwareNetDataset
# ----------------------------------------------------------------------------------------------------------------------
#
# Utility functions
# \***********************/
#
def listdir_str(path):
# listdir can return binary string instead od decoded string sometimes.
# This function ensures a steady behavior
f_list = []
for f in listdir(path):
try:
f = f.decode()
except (UnicodeDecodeError, AttributeError):
pass
f_list.append(f)
return f_list
def running_mean(signal, n, axis=0, stride=1):
signal = np.array(signal)
torch_conv = torch.nn.Conv1d(1, 1, kernel_size=2*n+1, stride=stride, bias=False)
torch_conv.weight.requires_grad_(False)
torch_conv.weight *= 0
torch_conv.weight += 1 / (2*n+1)
if signal.ndim == 1:
torch_signal = torch.from_numpy(signal.reshape([1, 1, -1]).astype(np.float32))
return torch_conv(torch_signal).squeeze().numpy()
elif signal.ndim == 2:
print('TODO implement with torch and stride here')
smoothed = np.empty(signal.shape)
if axis == 0:
for i, sig in enumerate(signal):
sig_sum = np.convolve(sig, np.ones((2*n+1,)), mode='same')
sig_num = np.convolve(sig*0+1, np.ones((2*n+1,)), mode='same')
smoothed[i, :] = sig_sum / sig_num
elif axis == 1:
for i, sig in enumerate(signal.T):
sig_sum = np.convolve(sig, np.ones((2*n+1,)), mode='same')
sig_num = np.convolve(sig*0+1, np.ones((2*n+1,)), mode='same')
smoothed[:, i] = sig_sum / sig_num
else:
print('wrong axis')
return smoothed
else:
print('wrong dimensions')
return None
def IoU_class_metrics(all_IoUs, smooth_n):
# Get mean IoU per class for consecutive epochs to directly get a mean without further smoothing
smoothed_IoUs = []
for epoch in range(len(all_IoUs)):
i0 = max(epoch - smooth_n, 0)
i1 = min(epoch + smooth_n + 1, len(all_IoUs))
smoothed_IoUs += [np.mean(np.vstack(all_IoUs[i0:i1]), axis=0)]
smoothed_IoUs = np.vstack(smoothed_IoUs)
smoothed_mIoUs = np.mean(smoothed_IoUs, axis=1)
return smoothed_IoUs, smoothed_mIoUs
def load_confusions(filename, n_class):
with open(filename, 'r') as f:
lines = f.readlines()
confs = np.zeros((len(lines), n_class, n_class))
for i, line in enumerate(lines):
C = np.array([int(value) for value in line.split()])
confs[i, :, :] = C.reshape((n_class, n_class))
return confs
def load_training_results(path):
filename = join(path, 'training.txt')
with open(filename, 'r') as f:
lines = f.readlines()
epochs = []
steps = []
L_out = []
L_p = []
acc = []
t = []
for line in lines[1:]:
line_info = line.split()
if (len(line) > 0):
epochs += [int(line_info[0])]
steps += [int(line_info[1])]
L_out += [float(line_info[2])]
L_p += [float(line_info[3])]
acc += [float(line_info[4])]
t += [float(line_info[5])]
else:
break
return epochs, steps, L_out, L_p, acc, t
def load_single_IoU(filename, n_parts):
with open(filename, 'r') as f:
lines = f.readlines()
# Load all IoUs
all_IoUs = []
for i, line in enumerate(lines):
all_IoUs += [np.reshape([float(IoU) for IoU in line.split()], [-1, n_parts])]
return all_IoUs
def load_snap_clouds(path, dataset, only_last=False):
cloud_folders = np.array([join(path, f) for f in listdir_str(path) if f.startswith('val_preds')])
cloud_epochs = np.array([int(f.split('_')[-1]) for f in cloud_folders])
epoch_order = np.argsort(cloud_epochs)
cloud_epochs = cloud_epochs[epoch_order]
cloud_folders = cloud_folders[epoch_order]
Confs = np.zeros((len(cloud_epochs), dataset.num_classes, dataset.num_classes), dtype=np.int32)
for c_i, cloud_folder in enumerate(cloud_folders):
if only_last and c_i < len(cloud_epochs) - 1:
continue
# Load confusion if previously saved
conf_file = join(cloud_folder, 'conf.txt')
if isfile(conf_file):
Confs[c_i] += np.loadtxt(conf_file, dtype=np.int32)
else:
for f in listdir_str(cloud_folder):
if f.endswith('.ply') and not f.endswith('sub.ply'):
data = read_ply(join(cloud_folder, f))
labels = data['class']
preds = data['preds']
Confs[c_i] += fast_confusion(labels, preds, dataset.label_values).astype(np.int32)
np.savetxt(conf_file, Confs[c_i], '%12d')
# Erase ply to save disk memory
if c_i < len(cloud_folders) - 1:
for f in listdir_str(cloud_folder):
if f.endswith('.ply'):
remove(join(cloud_folder, f))
# Remove ignored labels from confusions
for l_ind, label_value in reversed(list(enumerate(dataset.label_values))):
if label_value in dataset.ignored_labels:
Confs = np.delete(Confs, l_ind, axis=1)
Confs = np.delete(Confs, l_ind, axis=2)
return cloud_epochs, IoU_from_confusions(Confs)
# ----------------------------------------------------------------------------------------------------------------------
#
# Plot functions
# \********************/
#
def compare_trainings(list_of_paths, list_of_labels=None):
# Parameters
# **********
plot_lr = False
smooth_epochs = 0.5
stride = 2
if list_of_labels is None:
list_of_labels = [str(i) for i in range(len(list_of_paths))]
# Read Training Logs
# ******************
all_epochs = []
all_loss = []
all_lr = []
all_times = []
all_RAMs = []
for path in list_of_paths:
print(path)
if ('val_IoUs.txt' in [f for f in listdir_str(path)]) or ('val_confs.txt' in [f for f in listdir_str(path)]):
config = Config()
config.load(path)
else:
continue
# Load results
epochs, steps, L_out, L_p, acc, t = load_training_results(path)
epochs = np.array(epochs, dtype=np.int32)
epochs_d = np.array(epochs, dtype=np.float32)
steps = np.array(steps, dtype=np.float32)
# Compute number of steps per epoch
max_e = np.max(epochs)
first_e = np.min(epochs)
epoch_n = []
for i in range(first_e, max_e):
bool0 = epochs == i
e_n = np.sum(bool0)
epoch_n.append(e_n)
epochs_d[bool0] += steps[bool0] / e_n
smooth_n = int(np.mean(epoch_n) * smooth_epochs)
smooth_loss = running_mean(L_out, smooth_n, stride=stride)
all_loss += [smooth_loss]
all_epochs += [epochs_d[smooth_n:-smooth_n:stride]]
all_times += [t[smooth_n:-smooth_n:stride]]
# Learning rate
if plot_lr:
lr_decay_v = np.array([lr_d for ep, lr_d in config.lr_decays.items()])
lr_decay_e = np.array([ep for ep, lr_d in config.lr_decays.items()])
max_e = max(np.max(all_epochs[-1]) + 1, np.max(lr_decay_e) + 1)
lr_decays = np.ones(int(np.ceil(max_e)), dtype=np.float32)
lr_decays[0] = float(config.learning_rate)
lr_decays[lr_decay_e] = lr_decay_v
lr = np.cumprod(lr_decays)
all_lr += [lr[np.floor(all_epochs[-1]).astype(np.int32)]]
# Plots learning rate
# *******************
if plot_lr:
# Figure
fig = plt.figure('lr')
for i, label in enumerate(list_of_labels):
plt.plot(all_epochs[i], all_lr[i], linewidth=1, label=label)
# Set names for axes
plt.xlabel('epochs')
plt.ylabel('lr')
plt.yscale('log')
# Display legends and title
plt.legend(loc=1)
# Customize the graph
ax = fig.gca()
ax.grid(linestyle='-.', which='both')
# ax.set_yticks(np.arange(0.8, 1.02, 0.02))
# Plots loss
# **********
# Figure
fig = plt.figure('loss')
for i, label in enumerate(list_of_labels):
plt.plot(all_epochs[i], all_loss[i], linewidth=1, label=label)
# Set names for axes
plt.xlabel('epochs')
plt.ylabel('loss')
plt.yscale('log')
# Display legends and title
# !atttention!
# plt.legend(loc=1)
#plt.title('Loss vs Epoc')
# Customize the graph
ax = fig.gca()
ax.grid(linestyle='-.', which='both')
# ax.set_yticks(np.arange(0.8, 1.02, 0.02))
# Plot Times
# **********
# Figure
fig = plt.figure('time')
for i, label in enumerate(list_of_labels):
plt.plot(all_epochs[i], np.array(all_times[i]) / 3600, linewidth=1, label=label)
# Set names for axes
plt.xlabel('epochs')
plt.ylabel('time')
# plt.yscale('log')
# Display legends and title
plt.legend(loc=0)
# Customize the graph
ax = fig.gca()
ax.grid(linestyle='-.', which='both')
# ax.set_yticks(np.arange(0.8, 1.02, 0.02))
# Show all
plt.show()
def compare_convergences_segment(dataset, list_of_paths, list_of_names=None):
# Parameters
# **********
smooth_n = 10
if list_of_names is None:
list_of_names = [str(i) for i in range(len(list_of_paths))]
# Read Logs
# *********
all_pred_epochs = []
all_mIoUs = []
all_class_IoUs = []
all_snap_epochs = []
all_snap_IoUs = []
# Load parameters
config = Config()
config.load(list_of_paths[0])
class_list = [dataset.label_to_names[label] for label in dataset.label_values
if label not in dataset.ignored_labels]
s = '{:^10}|'.format('mean')
for c in class_list:
s += '{:^10}'.format(c)
print(s)
print(10*'-' + '|' + 10*config.num_classes*'-')
for path in list_of_paths:
# Get validation IoUs
file = join(path, 'val_IoUs.txt')
val_IoUs = load_single_IoU(file, config.num_classes)
# Get mean IoU
class_IoUs, mIoUs = IoU_class_metrics(val_IoUs, smooth_n)
# Aggregate results
all_pred_epochs += [np.array([i for i in range(len(val_IoUs))])]
all_mIoUs += [mIoUs]
all_class_IoUs += [class_IoUs]
s = '{:^10.1f}|'.format(100*mIoUs[-1])
for IoU in class_IoUs[-1]:
s += '{:^10.1f}'.format(100*IoU)
print(s)
# Get optional full validation on clouds
snap_epochs, snap_IoUs = load_snap_clouds(path, dataset)
all_snap_epochs += [snap_epochs]
all_snap_IoUs += [snap_IoUs]
print(10*'-' + '|' + 10*config.num_classes*'-')
for snap_IoUs in all_snap_IoUs:
if len(snap_IoUs) > 0:
s = '{:^10.1f}|'.format(100*np.mean(snap_IoUs[-1]))
for IoU in snap_IoUs[-1]:
s += '{:^10.1f}'.format(100*IoU)
else:
s = '{:^10s}'.format('-')
for _ in range(config.num_classes):
s += '{:^10s}'.format('-')
print(s)
# Plots
# *****
# Figure
fig = plt.figure('mIoUs')
for i, name in enumerate(list_of_names):
p = plt.plot(all_pred_epochs[i], all_mIoUs[i], '--', linewidth=1, label=name)
plt.plot(all_snap_epochs[i], np.mean(all_snap_IoUs[i], axis=1), linewidth=1, color=p[-1].get_color())
plt.xlabel('epochs')
plt.ylabel('IoU')
# Set limits for y axis
plt.ylim(0.4, 0.9)
# Display legends and title
# plt.legend(loc=4)
# Customize the graph
ax = fig.gca()
ax.grid(linestyle='-.', which='both')
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
displayed_classes = [0, 1, 2, 3, 4, 5, 6, 7]
displayed_classes = []
for c_i, c_name in enumerate(class_list):
if c_i in displayed_classes:
# Figure
fig = plt.figure(c_name + ' IoU')
for i, name in enumerate(list_of_names):
plt.plot(all_pred_epochs[i], all_class_IoUs[i][:, c_i], linewidth=1, label=name)
plt.xlabel('epochs')
plt.ylabel('IoU')
# Set limits for y axis
#plt.ylim(0.8, 1)
# Display legends and title
plt.legend(loc=4)
# Customize the graph
ax = fig.gca()
ax.grid(linestyle='-.', which='both')
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
# Show all
plt.show()
def compare_convergences_classif(list_of_paths, list_of_labels=None):
# Parameters
# **********
steps_per_epoch = 0
smooth_n = 12
if list_of_labels is None:
list_of_labels = [str(i) for i in range(len(list_of_paths))]
# Read Logs
# *********
all_pred_epochs = []
all_val_OA = []
all_train_OA = []
all_vote_OA = []
all_vote_confs = []
for path in list_of_paths:
# Load parameters
config = Config()
config.load(list_of_paths[0])
# Get the number of classes
n_class = config.num_classes
# Load epochs
epochs, _, _, _, _, _ = load_training_results(path)
first_e = np.min(epochs)
# Get validation confusions
file = join(path, 'val_confs.txt')
val_C1 = load_confusions(file, n_class)
val_PRE, val_REC, val_F1, val_IoU, val_ACC = smooth_metrics(val_C1, smooth_n=smooth_n)
# Get vote confusions
file = join(path, 'vote_confs.txt')
if exists(file):
vote_C2 = load_confusions(file, n_class)
vote_PRE, vote_REC, vote_F1, vote_IoU, vote_ACC = smooth_metrics(vote_C2, smooth_n=2)
else:
vote_C2 = val_C1
vote_PRE, vote_REC, vote_F1, vote_IoU, vote_ACC = (val_PRE, val_REC, val_F1, val_IoU, val_ACC)
# Aggregate results
all_pred_epochs += [np.array([i+first_e for i in range(len(val_ACC))])]
all_val_OA += [val_ACC]
all_vote_OA += [vote_ACC]
all_vote_confs += [vote_C2]
print()
# Best scores
# ***********
for i, label in enumerate(list_of_labels):
print('\n' + label + '\n' + '*' * len(label) + '\n')
print(list_of_paths[i])
best_epoch = np.argmax(all_vote_OA[i])
print('Best Accuracy : {:.1f} % (epoch {:d})'.format(100 * all_vote_OA[i][best_epoch], best_epoch))
confs = all_vote_confs[i]
"""
s = ''
for cc in confs[best_epoch]:
for c in cc:
s += '{:.0f} '.format(c)
s += '\n'
print(s)
"""
TP_plus_FN = np.sum(confs, axis=-1, keepdims=True)
class_avg_confs = confs.astype(np.float32) / TP_plus_FN.astype(np.float32)
diags = np.diagonal(class_avg_confs, axis1=-2, axis2=-1)
class_avg_ACC = np.sum(diags, axis=-1) / np.sum(class_avg_confs, axis=(-1, -2))
print('Corresponding mAcc : {:.1f} %'.format(100 * class_avg_ACC[best_epoch]))
# Plots
# *****
for fig_name, OA in zip(['Validation', 'Vote'], [all_val_OA, all_vote_OA]):
# Figure
fig = plt.figure(fig_name)
for i, label in enumerate(list_of_labels):
plt.plot(all_pred_epochs[i], OA[i], linewidth=1, label=label)
plt.xlabel('epochs')
plt.ylabel(fig_name + ' Accuracy')
# Set limits for y axis
#plt.ylim(0.55, 0.95)
# Display legends and title
plt.legend(loc=4)
# Customize the graph
ax = fig.gca()
ax.grid(linestyle='-.', which='both')
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
#for i, label in enumerate(list_of_labels):
# print(label, np.max(all_train_OA[i]), np.max(all_val_OA[i]))
# Show all
plt.show()
def compare_convergences_SLAM(dataset, list_of_paths, list_of_names=None):
# Parameters
# **********
smooth_n = 10
if list_of_names is None:
list_of_names = [str(i) for i in range(len(list_of_paths))]
# Read Logs
# *********
all_pred_epochs = []
all_val_mIoUs = []
all_val_class_IoUs = []
all_subpart_mIoUs = []
all_subpart_class_IoUs = []
# Load parameters
config = Config()
config.load(list_of_paths[0])
class_list = [dataset.label_to_names[label] for label in dataset.label_values
if label not in dataset.ignored_labels]
s = '{:^6}|'.format('mean')
for c in class_list:
s += '{:^6}'.format(c[:4])
print(s)
print(6*'-' + '|' + 6*config.num_classes*'-')
for path in list_of_paths:
# Get validation IoUs
nc_model = dataset.num_classes - len(dataset.ignored_labels)
file = join(path, 'val_IoUs.txt')
val_IoUs = load_single_IoU(file, nc_model)
# Get Subpart IoUs
file = join(path, 'subpart_IoUs.txt')
subpart_IoUs = load_single_IoU(file, nc_model)
# Get mean IoU
val_class_IoUs, val_mIoUs = IoU_class_metrics(val_IoUs, smooth_n)
subpart_class_IoUs, subpart_mIoUs = IoU_class_metrics(subpart_IoUs, smooth_n)
# Aggregate results
all_pred_epochs += [np.array([i for i in range(len(val_IoUs))])]
all_val_mIoUs += [val_mIoUs]
all_val_class_IoUs += [val_class_IoUs]
all_subpart_mIoUs += [subpart_mIoUs]
all_subpart_class_IoUs += [subpart_class_IoUs]
s = '{:^6.1f}|'.format(100*subpart_mIoUs[-1])
for IoU in subpart_class_IoUs[-1]:
s += '{:^6.1f}'.format(100*IoU)
print(s)
print(6*'-' + '|' + 6*config.num_classes*'-')
for snap_IoUs in all_val_class_IoUs:
if len(snap_IoUs) > 0:
s = '{:^6.1f}|'.format(100*np.mean(snap_IoUs[-1]))
for IoU in snap_IoUs[-1]:
s += '{:^6.1f}'.format(100*IoU)
else:
s = '{:^6s}'.format('-')
for _ in range(config.num_classes):
s += '{:^6s}'.format('-')
print(s)
# Plots
# *****
# Figure
fig = plt.figure('mIoUs')
for i, name in enumerate(list_of_names):
p = plt.plot(all_pred_epochs[i], all_subpart_mIoUs[i], '--', linewidth=1, label=name)
plt.plot(all_pred_epochs[i], all_val_mIoUs[i], linewidth=1, color=p[-1].get_color())
plt.xlabel('epochs')
plt.ylabel('IoU')
# Set limits for y axis
#plt.ylim(0.55, 0.95)
# Display legends and title
plt.legend(loc=4)
# Customize the graph
ax = fig.gca()
ax.grid(linestyle='-.', which='both')
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
displayed_classes = [0, 1, 2, 3, 4, 5, 6, 7]
#displayed_classes = []
for c_i, c_name in enumerate(class_list):
if c_i in displayed_classes:
# Figure
fig = plt.figure(c_name + ' IoU')
for i, name in enumerate(list_of_names):
plt.plot(all_pred_epochs[i], all_val_class_IoUs[i][:, c_i], linewidth=1, label=name)
plt.xlabel('epochs')
plt.ylabel('IoU')
# Set limits for y axis
#plt.ylim(0.8, 1)
# Display legends and title
plt.legend(loc=4)
# Customize the graph
ax = fig.gca()
ax.grid(linestyle='-.', which='both')
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
# Show all
plt.show()
# ----------------------------------------------------------------------------------------------------------------------
#
# Experiments
# \*****************/
#
def experiment_name_1():
"""
In this function you choose the results you want to plot together, to compare them as an experiment.
Just return the list of log paths (like 'results/Log_2020-04-04_10-04-42' for example), and the associated names
of these logs.
Below an example of how to automatically gather all logs between two dates, and name them.
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
specific_log = 'Log_2021-11-25_19-16-11'
start = specific_log
end = specific_log
# start = 'Log_2021-11-23_13-24-30'
# end = 'Log_2021-11-23_17-02-55'
# Name of the result path
res_path = 'results'
# Gather logs and sort by date
logs = np.sort([join(res_path, l) for l in listdir_str(res_path) if start <= l <= end])
# Give names to the logs (for plot legends)
logs_names = ['synthetic point cloud']
# safe check log names
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
def experiment_name_2():
"""
In this function you choose the results you want to plot together, to compare them as an experiment.
Just return the list of log paths (like 'results/Log_2020-04-04_10-04-42' for example), and the associated names
of these logs.
Below an example of how to automatically gather all logs between two dates, and name them.
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-04-22_11-52-58'
end = 'Log_2020-05-22_11-52-58'
# Name of the result path
res_path = 'results'
# Gather logs and sort by date
logs = np.sort([join(res_path, l) for l in listdir_str(res_path) if start <= l <= end])
print(logs)
# Optionally add a specific log at a specific place in the log list
#logs = logs.astype('<U50')
# logs = np.insert(logs, 0, 'results/Log_2020-04-04_10-04-42')
# Give names to the logs (for plot legends)
logs_names = ['name_log_inserted',
'name_log_1',
'name_log_2',
'name_log_3']
# safe check log names
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
# ----------------------------------------------------------------------------------------------------------------------
#
# Main Call
# \***************/
#
if __name__ == '__main__':
######################################################
# Choose a list of log to plot together for comparison
######################################################
# My logs: choose the logs to show
logs, logs_names = experiment_name_1()
################
# Plot functions
################
# Check that all logs are of the same dataset. Different object can be compared
plot_dataset = None
config = None
for log in logs:
config = Config()
config.load(log)
if 'ShapeNetPart' in config.dataset:
this_dataset = 'ShapeNetPart'
else:
this_dataset = config.dataset
if plot_dataset:
if plot_dataset == this_dataset:
continue
else:
raise ValueError('All logs must share the same dataset to be compared')
else:
plot_dataset = this_dataset
# Plot the training loss and accuracy
compare_trainings(logs, logs_names)
# Plot the validation
if config.dataset_task == 'classification':
compare_convergences_classif(logs, logs_names)
elif config.dataset_task == 'cloud_segmentation':
if config.dataset.startswith('SoftwareNet'):
dataset = SoftwareNetDataset(config, load_data=False)
compare_convergences_segment(dataset, logs, logs_names)
elif config.dataset_task == 'slam_segmentation':
if config.dataset.startswith('SemanticKitti'):
dataset = SemanticKittiDataset(config)
compare_convergences_SLAM(dataset, logs, logs_names)
else:
raise ValueError('Unsupported dataset : ' + plot_dataset)