-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathUI2.py
249 lines (188 loc) · 6.92 KB
/
UI2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import cv2
import numpy as np
import PySimpleGUI as sg
import time
from playsound import playsound as play
sg.theme("LightGreen")
layout = [
[sg.Text("STUD-bot v1", size=(60, 1), justification="center")],
[sg.Image(filename="", key="-IMAGE-")],
[
sg.Text('Max break Time in Minutes', size=(10, 1)),
sg.Slider(
(1, 30),
0,
1,
orientation="h",
size=(40, 15),
key="-MAX BREAK TIME-",
),
],
[
sg.Text("Eye Aspect Ratio", size=(10, 1)),
sg.Slider(
(0, 100),
0,
1,
orientation="h",
size=(40, 15),
key="-EYE_AR_THRESH-",
)
],
[
sg.Text("Consequitive frames", size=(10, 1), ),
sg.Slider(
(0, 60),
0,
1,
orientation="h",
size=(40, 15),
key="-EYE_AR_CONSEC_FRAMES-",
)
],
[sg.Button("Exit", size=(10, 1))],
]
window = sg.Window("Stud-bot", layout, location=(800, 400))
net = cv2.dnn.readNet("yolov3.weights","yolov3.cfg")
classes = []
with open("coco.names","r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
outputlayers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors= np.random.uniform(0,255,size=(len(classes),3))
from scipy.spatial import distance as dist
from imutils.video import VideoStream
from imutils import face_utils
from threading import Thread
import numpy as np
import playsound
import argparse
import imutils
import time
import dlib
import cv2
def sound_alarm(path):
# play an alarm sound
playsound.playsound(path)
def eye_aspect_ratio(eye):
# compute the euclidean distances between the two sets of
# vertical eye landmarks (x, y)-coordinates
A = dist.euclidean(eye[1], eye[5])
B = dist.euclidean(eye[2], eye[4])
# compute the euclidean distance between the horizontal
# eye landmark (x, y)-coordinates
C = dist.euclidean(eye[0], eye[3])
# compute the eye aspect ratio
ear = (A + B) / (2.0 * C)
# return the eye aspect ratio
return ear
args = {"shape_predictor": "shape_predictor_68_face_landmarks.dat", "alarm": "alarm.wav", "webcam": 0}
EYE_AR_THRESH = 0.3
EYE_AR_CONSEC_FRAMES = 15
COUNTER = 0
ALARM_ON = False
print("[INFO] loading facial landmark predictor...")
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
print("[INFO] starting video stream thread...")
vs = VideoStream(src=args["webcam"]).start()
time.sleep(1.0)
frame_id=0
font = cv2.FONT_HERSHEY_PLAIN
starting_time = time.time()
break_time=0
while True:
person_detected=False
frame_start_time=time.time()
event, values = window.read(timeout=20)
if event == "Exit" or event == sg.WIN_CLOSED:
break
EYE_AR_THRESH = values["-EYE_AR_THRESH-"]/100
EYE_AR_CONSEC_FRAMES = values["-EYE_AR_CONSEC_FRAMES-"]
frame_id += 1
frame = vs.read()
frame = imutils.resize(frame, width=450)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
height, width, channels = frame.shape
rects = detector(gray, 0)
blob = cv2.dnn.blobFromImage(frame, 0.00392, (320, 320), (0, 0, 0), True, crop=False) # reduce 416 to 320
net.setInput(blob)
outs = net.forward(outputlayers)
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.3:
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(
float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.4, 0.6)
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
if(label=='person'):
person_detected=True
if (label == "cell phone"):
play('alarm.wav')
confidence = confidences[i]
color = colors[class_ids[i]]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, label + " " + str(round(confidence, 2)), (x, y + 30), font, 1, (255, 255, 255), 2)
for rect in rects:
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
leftEAR = eye_aspect_ratio(leftEye)
rightEAR = eye_aspect_ratio(rightEye)
ear = (leftEAR + rightEAR) / 2.0
leftEyeHull = cv2.convexHull(leftEye)
rightEyeHull = cv2.convexHull(rightEye)
cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)
cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)
if ear < EYE_AR_THRESH:
COUNTER += 1
if COUNTER >= EYE_AR_CONSEC_FRAMES:
if not ALARM_ON:
ALARM_ON = True
play(args["alarm"])
cv2.putText(frame, "DROWSINESS ALERT!", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
else:
COUNTER = 0
ALARM_ON = False
cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
elapsed_time = time.time() - starting_time
fps = frame_id / elapsed_time
cv2.putText(frame, "FPS:" + str(round(fps, 2)), (10, 50), font, 2, (0, 0, 0), 1)
#cv2.imshow("Frame", frame)
#key = cv2.waitKey(1) & 0xFF
if (person_detected==False):
break_time+=time.time()-frame_start_time
cv2.putText(frame, "Break Time" + str(break_time//60)+":"+str(round(break_time%60,2)), (10, 100), font, 2, (0, 0, 0), 1)
if break_time>values["-MAX BREAK TIME-"]*60:
play('alarm.wav')
else:
break_time=0
imgbytes = cv2.imencode(".png", frame)[1].tobytes()
window["-IMAGE-"].update(data=imgbytes)
#if key == ord("q"):
# break
cv2.destroyAllWindows()
window.close()
vs.stop()