-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsoliton.tex
672 lines (648 loc) · 34.8 KB
/
soliton.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
\chapter{K\"ahler-Ricci solitons on Fano threefolds} \label{chap:sol}
\chaptermark{K\"ahler-Ricci solitons on Fano threefolds}
In this chapter we prove the following theorem:
\begin{theorem}[{\cite[Theorem 1.8]{cable2018classification}}] \label{thm:sol}
The Fano threefolds \(2.30\), \(2.31\), \(3.18\), \(3.22\) ,\(3.23\), \(3.24\), \(4.8\), from Mori and Mukai's classification \cite{mori1981classification}, admit a non-trivial K\"ahler-Ricci soliton.
\end{theorem}
Together with \cite[Theorems. 6.1, 6.2]{ilten2015} it follows that all known smooth Fano threefolds with an effective complexity-one torus action admit a K\"ahler-Ricci soliton. We follow the joint work of \cite{cable2018classification}. Here we describe the contribution of the author of this thesis to this article, namely to perform calculations to test the \(K\)-stability of threefolds and thus determine which admit K\"ahler-Ricci solitons.
\section{The method of proof}
This proof of Theorem~\ref{thm:sol} is somewhat calculational in nature, and uses some computer assistance. In this section we give a summary of our approach. At the end of this subsection we provide a more formal proof.
Let \(X\) be a smooth complexity one Fano \(T\)-variety. Recall the definition of a K\"ahler-Ricci soliton from Section~\ref{sec:canonmetric}. We test for the existence of a soliton on \(X\) using Theorem~\ref{thm:DS}. Recall from Section~\ref{prelim:Tvar} that a Fano complexity one \(T\)-variety \((X,-K_X)\) corresponds to a Fano divisorial polytope \(\Phi: \Box \to \wdiv_\QQ \PP^1\).
We first use Theorem \ref{thm:BWN} to find a candidate vector field \(\xi \in N_\RR\) for a soliton. Any such \(\xi\) should satisfy the following equation:
\begin{equation} \label{eq:producteq}
\DF_{\xi}(X \times \mathbb{A}^1, w) = 0
\end{equation}
for all \(w \in N'_\RR\). By (\ref{eq:futaki-character}) this becomes:
\begin{equation} \label{eq:combproducteq}
\int_{\Box} \langle u, v \rangle \cdot \deg \bar \Phi(u) \cdot e^{\langle u, \xi \rangle}\, du = 0
\end{equation}
By the arguments in \cite[Section~3.1]{donaldson2008kahler} there always exist a unique choice $\xi \in N_\RR$ for which this holds. We refer to such a $\xi$ as a \textit{soliton canditate}.
The integral (\ref{eq:combproducteq}) may be solved symbolically, outputting an exponential polynomial \(g(\xi, e^{\xi})\) in \(\xi\). In practice however, the domain \(P\) can complicate the calculation for \(\dim X > 2\). To deal with this we developed a recursive algorithm, based on results of Barvinok \cite{Barvinok1992}, which reduces the integral to evaluations at the vertices of \(P\). We explain this algorithm at the end of this chapter.
For our examples the equation \(g(\xi,e^{\xi}) = 0\) is impossible to solve analytically. To get around this we use \textit{real interval arithmetic} (RIA) estimates to find some hypercube \(D\) in which the solution \(\xi\) lies. For each special test configuration \((\X,\L,w)\) we then use further RIA to show that \(\DF_{\xi'}(\X,,\L,w)>0\) for \(\xi \in D\). In Table~\ref{table:solitontable} below we give estimates found for the vector field \(\xi\) for each threefold in the list of \cite{suss2013fano}. We can show that our approximations are correct to the nearest \(10^{-5}\). Note that the threefolds 3.8*, 3.21, 4.5 were shown to admit a non-trivial K\"ahler-Ricci soliton in \cite{ilten2015}.
When \(\dim X = 2\) the process of finding suitable \(D\) via RIA is a simple application of the intermediate value theorem. For \(\dim X >2 \) we cannot immediately use the intermediate value theorem to obtain \(D\). In all but one of our examples we are able to make use of additional symmetries to reduce to a one-dimensional problem.
Given an automorphism \(\sigma \in \GL(M)\) permuting the vertices of \(\Box\) such that \(\deg (\Phi \circ \sigma) = \deg \Phi\), by (\ref{eq:futaki-general-fibre}) we have:
\[
\DF_{\sigma^{\!*}\!(\xi)} (\X,\L,\cdot) = \DF_{X, \xi}(\X,\L,\cdot) \ \circ \ \sigma^*
\]
Since \(\xi \in N_\mathbb{R}\) is the unique solution to \(F_{X,\xi} = 0\), this gives \(\xi \in N_{\mathbb{R}}^{\sigma^*}\). For \(\dim X = 3\) we have \(\dim N_{\mathbb{R}}^{\sigma^*} = 1\) and we are in a situation where intermediate value theorem may be used to find \(D\). Note that in threefold 3.23 there is no such \(\sigma\). Here we must take another approach, which we explain in the proof below, and in Example~\ref{ex:assym}.
%
%
%
\begin{table}[H] \centering
\captionsetup{width=.95\linewidth}
\caption{Fano threefolds and their soliton vector fields in the canonical coordinates coming with the representation of the combinatorial data in \cite{suss2013fano}.} \label{table:solitontable}
\begin{tabular}{l l l}
\toprule
Threefold & $\xi$ & \\ \hline
Q & $(0,0)$ \\
2.24* & $(0,0)$ \\
2.29 & $(0,0)$ \\
2.30 & $(0,0.51489)$ \\
2.31 & $(0.28550,0.28550)$\\
2.32 & $(0,0)$ \\
3.8* & $(0,-0.76905)$ \\
3.10* & $(0,0)$ \\
3.18 & $(0,0.37970)$ \\
3.19 & $(0,0)$ \\
3.20 & $(0,0)$ \\
3.21 & $(-0.69622,-0.69622)$ \\
3.22 & $(0,0.91479)$ \\
3.23 & $(0.26618, 0.67164)$ \\
3.24 & $(0,0.43475)$ \\
4.4 & $(0,0)$ \\
4.5* & $(-0.31043,-0.31043)$ \\
4.7 & $(0,0)$ \\
4.8 & $(0,0.62431)$ \\
\bottomrule
\end{tabular}
\label{table:name}
\end{table}
We now give a more formal proof of Theorem~\ref{thm:sol}. The complete calculations for the proof are performed using SageMath, and can be found as an online worksheet\footnote{\url{https://cocalc.com/projects/ae8e1663-e2ad-40b8-aec2-30faf4e6a54f/files/threefolds.sagews}}.
\begin{proof}[Proof of Theorem~\ref{thm:sol}]
The data required for this proof is collated in Appendix~\ref{appendix1}. The divisorial polytopes were originally given in \cite{suss2013fano}, although the piecewise affine \(\Psi\) discussed there differs from our divisorial polytope \(\Phi\) by the divisor \(D = 2 \cdot \{ \infty \}\).
For each of the threefolds \(2.30\), \(2.31\), \(3.18\), \(3.22\) , \(3.24\), and \(4.8\) there exists a non-trivial involution \(\sigma \in \GL(M)\) permuting the vertices of \(\Box\) such that \(\deg (\Phi \circ \sigma) = \deg \Phi\). Choose a basis $e_1, e_2$ of $N$ with $\sigma^*(e_1)=-e_1$ and $\sigma^*(e_2)=e_2$. The soliton candidate $\xi = (\xi_1,\xi_2)$ must be contained in the line $N_\RR^{\sigma^*} = \RR e_2$. For each of these examples we obtain an interval \(D\) in which the soliton candidate must lie, via the intermediate value theorem and RIA, see Appendix~\ref{appendix1}.
Recall the description of non-product special test configurations and Donaldson-Futaki invariants from \ref{subsec:IS} as integrals over \(\Delta_y \subset M'\). Let \(e_3 = (0,1) \in N \times \ZZ =: N'\). In Appendix~\ref{appendix1} we provide closed forms for the functions
\[
h_y(\xi_2) := (\vol \Delta_y) \cdot \DF_{\xi_2 e_2}(\X,\L,e_3)
\] for every admissible choice of $y \in \PP^1$.
In Appendix~\ref{appendix1} we also give lower bounds on \(h_y(D)\) using further RIA, ensuring the positivity of $\DF_{\xi_2 e_2}(\X,\L,e_3)$ and hence of $\DF_{\xi_2 e_2}(\X,\L,v')$ for any special test configuration \((\X,\L,v')\). These threefolds then admit a K\"ahler-Ricci soliton by Theorem~\ref{thm:DS}. See Example~\ref{ex:sym} for details of the computation and Appendix~\ref{app:code} for the implementation in SageMath.
For the case of threefold no. 3.23 there is no involution fixing $\deg \Phi$. In this case we take a more general approach to bound the value of the candidate \(\xi\). Here we make use of some elementary calculus. Note, that \(\xi\) is the unique solution to the equation \(\nabla_n G = 0 \), where
\[
G(v) := \int_{\Box} \deg \Phi(u) \cdot e^{\langle u, v \rangle}\, du =
\int_{\Delta_0} e^{\langle u', (v,0) \rangle} \, du'.
\]
We identify a rectangular region \(D \subset \RR^2 \) such that \(\nabla_n G > 0 \) holds along \(\partial D\), where \(n\) is any unit outer normal of the rectangle \(D\). Since $D$ is compact it must contain a local minimum of $G$, which then cannot lie on \(\partial D\). We then have \(\xi\) in the interior of \(D\) such that \(\nabla_n G = 0\).
To show $\nabla_n G >0 $ along $\partial D$ we have to again use interval arithmetic. We determine a closed form which coincides with $\nabla_n G$ up to a positive constant. We subdivide the faces of the boundary into sufficiently small segments. Using RIA on the closed form for $\nabla_n G(\xi)$ we obtain the positivity result. See Example~\ref{ex:assym} for details of the computation, and Appendix~\ref{app:code} for the implementation in SageMath.
\end{proof}
\newpage
\section{Two examples in detail}
Here we present the proofs for threefolds 2.30 and 3.23 in detail.
\begin{example}\label{ex:sym}
Consider the threefold 2.30 from the classification of Mori and Mukai. The corresponding divisorial polytope \(\Phi\) is given in Figure~\ref{fig:data230}. We first find the unique soliton candidate \(\xi \in N_\mathbb{R}\). We see that $\deg \Phi$ is symmetric with respect to reflection $\sigma$ along the vertical axis, and so \(\xi = \xi_2e_2\) for some \(\xi_2 \in \mathbb{R}\). We must find a solution $\xi_2$ to $\DF_{\xi_2 e_2}(X \times \mathbb{A}^1, \cdot)$, which is equivalent to $\DF_{\xi_2 e_2}(X \times \mathbb{A}^1,e_2)=0$.
\begin{figure}[H]
\centering
\begin{subfigure}[b]{0.475\textwidth}
\centering
\begin{tikzpicture}[scale=0.7]
% \draw[dotted,step=1,] (-3,-3) grid (3,2);
\draw[line width = 1pt] (0,-3) --
(-3,0) -- (-2,1)--(2,1)--
(3,0)--(0,-3); \draw[densely dashdotted, line width = 1.2pt] (0,-3) -- (0,1);
\node at (0,-3) [below] {\large{$0$}};
\node at (-3,0) [left] {\large{$0$}};
\node at (-2,1) [above] {\large{$0$}};
\node at (2,1) [above] {\large{$-2$}};
\node at (3,0) [right] {\large{$-3$}};
\node at (0,1) [above] {\large{$0$}};
\foreach \i in {-3,...,3}{
\foreach \j in {-3,...,2}{
\draw[gray] (\i,\j) node {\tiny{$\circ$}};
}
}
\draw (0,0) node {\textbullet};
\end{tikzpicture}
\caption*{$\Phi_0$}
\end{subfigure}
\begin{subfigure}[b]{0.475\textwidth}
\centering
\begin{tikzpicture}[scale=0.7]
% \draw[dotted,step=1] (-3,-3) grid (3,2);
\draw[line width = 1.2pt] (0,-3) --
(-3,0) -- (-2,1)--(2,1)--
(3,0)--(0,-3); \draw[densely dashdotted,line width = 1.2pt] (-3,0) -- (3,0);
\node at (0,-3) [below] {\large{$-3$}};
\node at (-3,0) [left] {\large{$0$}};
\node at (-2,1) [above] {\large{$0$}};
\node at (2,1) [above] {\large{$0$}};
\node at (3,0) [right] {\large{$0$}};
\foreach \i in {-3,...,3}{
\foreach \j in {-3,...,2}{
\draw[gray] (\i,\j) node {\tiny{$\circ$}};
}
}
\draw (0,0) node {\textbullet};
\end{tikzpicture}
\caption*{$\Phi_1$}
\end{subfigure}
\vskip\baselineskip
\begin{subfigure}[b]{0.475\textwidth}
\centering
\begin{tikzpicture}[scale=0.7]
% \draw[dotted,step=1,mycyan] (-3,-3) grid (3,2);
\draw[line width = 1.2pt] (0,-3) --
(-3,0) -- (-2,1)--(2,1)--
(3,0)--(0,-3);
\node at (0,-3) [below] {\large{$1$}};
\node at (-3,0) [left] {\large{$-2$}};
\node at (-2,1) [above] {\large{$-2$}};
\node at (2,1) [above] {\large{$0$}};
\node at (3,0) [right] {\large{$1$}};
\foreach \i in {-3,...,3}{
\foreach \j in {-3,...,2}{
\draw[gray] (\i,\j) node {\tiny{$\circ$}};
}
}
\draw (0,0) node {\textbullet};
\end{tikzpicture}
\caption*{$\Phi_\infty$}
\end{subfigure}
\begin{subfigure}[b]{0.475\textwidth}
\centering
\begin{tikzpicture}[scale=0.7]
% \draw[dotted,step=1] (-3,-3) grid (3,2);
\draw[line width = 1.2pt] (0,-3) --
(-3,0) -- (-2,1)--(2,1)--
(3,0)--(0,-3);
\draw[densely dashdotted,line width = 1.2pt] (-3,0) -- (3,0);
\draw[densely dashdotted,line width = 1.2pt] (0,-3) -- (0,1) ;
\node at (0,-3) [below] {\large{$-2$}};
\node at (-3,0) [left] {\large{$-2$}};
\node at (-2,1) [above] {\large{$-2$}};
\node at (2,1) [above] {\large{$-2$}};
\node at (3,0) [right] {\large{$-2$}};
\node at (0,0) [below left] {\large{-$\frac{1}{2}$}};
\node at (0,1) [above] {\large{$-1$}};
\draw (0,0) node {\textbullet};
\foreach \i in {-3,...,3}{
\foreach \j in {-3,...,2}{
\draw[gray] (\i,\j) node {\tiny{$\circ$}};
}
}
\end{tikzpicture}
\caption*{$\deg \Phi $}
\end{subfigure}
\caption{Divisorial polytope for threefold 2.30} \label{fig:data230}
\end{figure}
By (\ref{eq:futaki-character}) the vanishing of \(\DF_{\xi_2 e_2}(X \times \mathbb{A}^1,e_2)\) is equivalent to that of:
\[
0=g(\xi_2) := \int_{\Box} u_2 \cdot \deg \bar \Phi(u) \cdot e^{u_2 \xi_2}\, du = \int_{\Delta_0} u_2 \cdot e^{u_2 \xi_2}\, du,
\]
where the integral on the right hand side can be solved analytically. We obtain:
\[
g(\xi_2) = \frac{1}{\xi_{2}^{4}}\cdot\left({\left(2 \, \xi_{2}^{3} - 3 \, \xi_{2} - 3\right)} e^{\left(4 \, \xi_{2}\right)} + 12 \, \xi_{2} e^{\left(3 \, \xi_{2}\right)} + 3 \, \xi_{2} + 3\right) e^{\left(-3 \, \xi_{2}\right)}.
\]
Evaluating the exponential functions with a precision of 16 binary digits and using elementary estimations it can be shown that \(g(0.514) <0\) and \(g(0.515)>0\). By the intermediate value theorem then \(0.514 < \xi_2 < 0.515\). It remains to check the positivity of the Donaldson-Futaki invariant for each toric degeneration appearing as the space of a special test configuration. The corresponding polytopes are given as the convex hull of a finite set of points in Appendix~\ref{appendix1}. See also Figure~\ref{fig:degen230}.
\begin{figure}[H]
\centering
\begin{subfigure}[b]{0.475\textwidth}
\centering
\begin{tikzpicture}[%
tdplot_main_coords,scale=1,
>=stealth
]
\draw[fill=mycyan,opacity=1] (0,-3,1) -- (-3,0,1) -- (3,0,-2) -- cycle;
\draw[fill=mycyan,opacity=1] (3,0,-2) -- (-3,0,1) -- (-2,1,1) -- (2,1,-1) -- cycle;
\draw[thick,dotted] (0,0,0) -- (0,0,1.2);
\draw[thick,dotted] (0,0,0) -- (1,0,0);
\draw[thick,dotted] (0,0,0) -- (0,1,0);
\draw[fill=mycyan,opacity=0.7] (0,-3,1) -- (-3,0,1) -- (-2,1,1) -- (0,1,1) -- cycle;
\draw[fill=mycyan,opacity=0.7] (0,-3,1) -- (0,1,1) -- (2,1,-1) -- (3,0,-2) -- cycle;
\draw[fill=mycyan,opacity=0.7] (0,1,1) -- (-2,1,1) -- (2,1,-1) -- cycle;
\draw[thick,->,dotted] (0,0,1.2) -- (0,0,2);
\draw[thick,->,dotted] (1,0,0) -- (3,0,0);
\draw[thick,->,dotted] (0,1,0) -- (0,2,0);
\end{tikzpicture}
\caption{\(\Delta_{0}\)}
\end{subfigure}
\begin{subfigure}[b]{0.475\textwidth}
\centering
\tdplotsetmaincoords{50}{120}{}
\begin{tikzpicture}[%
tdplot_main_coords,scale=1,
>=stealth
]
\draw[fill=mycyan,opacity=1] (0,-3,-2) -- (-3,0,1) -- (-2,1,1) -- (0,1,0) -- cycle;
\draw[fill=mycyan,opacity=1] (0,-3,-2) -- (3,0,1) -- (2,1,1) -- (0,1,0) -- cycle;
\draw[thick,dotted] (0,0,0) -- (0,0,1);
\draw[thick,dotted] (0,0,0) -- (1.4,0,0);
\draw[thick,dotted] (0,0,0) -- (0,1,0);
\draw[fill=mycyan,opacity=0.8] (0,1,0) -- (2,1,1) -- (-2,1,1) -- cycle;
\draw[fill=mycyan,opacity=0.8] (2,1,1) -- (-2,1,1) -- (-3,0,1) -- (3,0,1) -- cycle;
\draw[fill=mycyan,opacity=0.8] (0,-3,-2) -- (3,0,1) -- (-3,0,1) -- cycle;
\draw[thick,->,dotted] (0,0,1) -- (0,0,2);
\draw[thick,->,dotted] (1.4,0,0) -- (3,0,0);
\draw[thick,->,dotted] (0,1,0) -- (0,2,0);
\end{tikzpicture}
\caption{\(\Delta_{1}\)}
\end{subfigure}
\vskip\baselineskip
\begin{subfigure}[b]{0.475\textwidth}
\centering
\tdplotsetmaincoords{70}{150}{}
\begin{tikzpicture}[%
tdplot_main_coords,scale=1,
>=stealth
]
\draw[fill=mycyan,opacity=1] (-2,1,-1) -- (-3,0,-1) -- (0,0,-1) -- (0,1,-1) -- cycle;
\draw[fill=mycyan,opacity=1] (0,0,-1) -- (-3,0,-1) -- (0,-3,2) -- cycle;
\draw[fill=mycyan,opacity=1] (0,0,-1) -- (3,0,2) -- (0,-3,2) -- cycle;
\draw[thick,dotted] (0,0,0) -- (0,0,1);
\draw[thick,dotted] (0,0,0) -- (1,0,0);
\draw[thick,dotted] (0,0,0) -- (0,1,0);
\draw[fill=mycyan,opacity=1] (2,1,1) -- (3,0,2) -- (0,0,-1) -- (0,1,-1) -- cycle;
\draw[fill=mycyan,opacity=0.7] (-3,0,-1) -- (0,-3,2) -- (3,0,2) -- (2,1,1) -- (-2,1,-1) -- cycle;
\draw[fill=mycyan,opacity=0.7] (2,1,1) -- (-2,1,-1) -- (0,1,-1) -- cycle;
\draw[thick,->,dotted] (0,0,1) -- (0,0,2);
\draw[thick,->,dotted] (1,0,0) -- (3,0,0);
\draw[thick,->,dotted] (0,1,0) -- (0,3,0);
\end{tikzpicture}
\caption{\(\Delta_{\infty}\)}
\end{subfigure}
\begin{subfigure}[b]{0.475\textwidth}
\centering
\tdplotsetmaincoords{70}{130}{}
\begin{tikzpicture}[%
tdplot_main_coords,scale=1,
>=stealth
]
\draw[fill=mycyan,opacity=1] (-3,0,1) -- (-2,1,1) -- (0,1,0) -- (0,0,-1/2) -- cycle;
\draw[fill=mycyan,opacity=1] (-3,0,1) -- (0,-3,1) -- (0,0,-1/2) -- cycle;
\draw[fill=mycyan,opacity=1] (3,0,1) -- (0,-3,1) -- (0,0,-1/2) -- cycle;
\draw[thick,dotted] (0,0,0) -- (0,0,1);
\draw[thick,->,dotted] (0,0,0) -- (3,0,0);
\draw[thick,->,dotted] (0,0,0) -- (0,2,0);
\draw[fill=mycyan,opacity=0.7] (3,0,1) -- (2,1,1) -- (0,1,0) -- (0,0,-1/2) -- cycle;
\draw[fill=mycyan,opacity=0.7] (-3,0,1) -- (0,-3,1) -- (3,0,1) -- (2,1,1) -- (-2,1,1) -- cycle;
\draw[fill=mycyan,opacity=0.7] (2,1,1) -- (0,1,0) -- (-2,1,1) -- cycle;
\draw[thick,->,dotted] (0,0,1) -- (0,0,2);
\end{tikzpicture}
\caption{\(\Delta_{\gen}\)}
\end{subfigure}
\caption{Special configuration polyhedra for 2.30.} \label{fig:degen230}
\end{figure}
In each case we must check positivity of the Donaldson-Futaki invariant when the induced \(\CC^*\)-action is given by \(e_3 := (0,0,1) \in N \times \ZZ \). Denote
\[
h_y(\xi_2) := (\vol \Delta_y) \cdot \DF_{(0,\xi_2)}(\X_{y},e_3).
\]
Clearly the positivity of \(h_y\) implies that of \(\DF_\xi(\X_{y,0,1})\).
Once more solving the integrals appearing in (\ref{eq:futaki-character}), we obtain:
\begin{align*}
h_0(\xi_2) &= \frac{1}{3\xi_2^{4}}\cdot
{\left({\left(2 \xi_2^{3} - 3 \xi_2 - 3\right)} e^{4 \xi_2} + 3 {\left(3 \xi_2^{2} + 2\right)} e^{3 \xi_2} - 3 \xi_2 - 3\right)} e^{-3 \xi_2}
\\
h_1(\xi_2) &= \frac{1}{6 \xi_2^{4}}\cdot
{\left({\left(8 \xi_2^{3} + 6 \xi_2^{2} - 3\right)} e^{4 \xi_2} - 12 {\left(3 \xi_2^{2} - 3 \xi_2 + 1\right)} e^{3 \xi_2} + 12 \xi_2 + 15\right)} e^{-3 \xi_2} \\
h_\infty(\xi_2) &= -\frac{1}{6 \xi_2^{4}}\cdot
{\left(2 {\left(2 \xi_2^{3} - 3 \xi_2 - 3\right)} e^{4 \xi_2} - 3 {\left(3 \xi_2^{2} - 12 \xi_2 + 2\right)} e^{3 \xi_2} + 12 \xi_2 + 12\right)} e^{-3 \xi_2} \\
h_{\gen}(\xi_2) &= \frac{1}{6 \xi_2^{4}}\cdot{\left({\left(8 \xi_2^{3} + 6 \xi_2^{2} - 3\right)} e^{4 \xi_2 } - 3 {\left(3 \xi_2^{2} - 2\right)} e^{3 \xi_2} - 6 y - 3\right)} e^{-3 \xi_2}
\end{align*}
Using the same precision as above, the evaluations of the exponential functions at the lower and upper bounds for \(\xi_2\) give estimates:
\begin{align*}
1.087 &< h_0(\xi_2) < 1.458 \\
2.178 &< h_1(\xi_2) < 2.470\\
0.446 &< h_\infty(\xi_2) < 0.827 \\
4.151 &< h_{\gen}(\xi_2) < 4.309
\end{align*}
We can therefore conclude that the threefold 2.30 is \(K\)-stable, and must admit a non-trivial K\"ahler-Ricci soliton.
\end{example}
\begin{example}
Consider the threefold 3.23.
\label{ex:assym}
We follow the calculations outlined in the above proof of Theorem~\ref{thm:sol}. As before we first have to find a closed form for $\DF_{\xi}(n)$, or $\nabla_n G(\xi)$, respectively. See Figure~\ref{fig:divpo323} for the divisorial polytope in this case.
\begin{figure}[h]
\centering
\begin{subfigure}[b]{0.475\textwidth}
\centering
\begin{tikzpicture}[scale=0.7]
% \draw[dotted,step=1,gray,] (-3,-3) grid (3,2);
\draw[line width = 1pt] (0,-3) --
(-3,0) -- (-2,1)--(1,1)--
(2,0)--(2,-1) -- (0,-3);
\draw[densely dashdotted, gray, line width = 1.2pt] (0,-3) -- (0,1);
\node at (0,-3) [below] {\large{$0$}};
\node at (-3,0) [left] {\large{$0$}};
\node at (-2,1) [above] {\large{$0$}};
\node at (1,1) [right] {\large{$-1$}};
\node at (2,0) [right] {\large{$-2$}};
\node at (2,-1) [below] {\large{$-2$}};
\node at (0,1) [above] {\large{$0$}};
\foreach \i in {-3,...,3}{
\foreach \j in {-3,...,2}{
\draw[gray] (\i,\j) node {\tiny{$\circ$}};
}
}
\draw (0,0) node {\textbullet};
\end{tikzpicture}
\caption*{$\Phi_0$}
\end{subfigure}
\begin{subfigure}[b]{0.475\textwidth}
\centering
\begin{tikzpicture}[scale=0.7]
% \draw[dotted,step=1,gray] (-3,-3) grid (3,2);
\draw[line width = 1pt] (0,-3) --
(-3,0) -- (-2,1)--(1,1)--
(2,0)--(2,-1) -- (0,-3);
\draw[densely dashdotted, gray, line width = 1.2pt] (-3,0) -- (2,0);
\node at (0,-3) [below] {\large{$-3$}};
\node at (-3,0) [left] {\large{$0$}};
\node at (-2,1) [above] {\large{$0$}};
\node at (1,1) [above] {\large{$0$}};
\node at (2,0) [right] {\large{$0$}};
\node at (2,-1) [below] {\large{$-1$}};
\foreach \i in {-3,...,3}{
\foreach \j in {-3,...,2}{
\draw[gray] (\i,\j) node {\tiny{$\circ$}};
}
}
\draw (0,0) node {\textbullet};
\end{tikzpicture}
\caption*{$\Phi_1$}
\end{subfigure}
\vskip\baselineskip
\begin{subfigure}[b]{0.475\textwidth}
\centering
\begin{tikzpicture}[scale=0.7]
% \draw[dotted,step=1,gray] (-3,-3) grid (3,2);
\draw[line width = 1pt] (0,-3) --
(-3,0) -- (-2,1)--(1,1)--
(2,0)--(2,-1) -- (0,-3);
\draw[densely dashdotted, gray, line width = 1.2pt] (2,-1) -- (0,1);
\node at (0,-3) [below] {\large{$1$}};
\node at (-3,0) [left] {\large{$-2$}};
\node at (-2,1) [above left] {\large{$-2$}};
\node at (1,1) [above] {\large{$-1$}};
\node at (0,1) [above left] {\large{$-1$}};
\node at (2,0) [right] {\large{$0$}};
\node at (2,-1) [below] {\large{$1$}};
\foreach \i in {-3,...,3}{
\foreach \j in {-3,...,2}{
\draw[gray] (\i,\j) node {\tiny{$\circ$}};
}
}
\draw (0,0) node {\textbullet};
\end{tikzpicture}
\caption*{$\Phi_\infty$}
\end{subfigure}
\begin{subfigure}[b]{0.475\textwidth}
\centering
\begin{tikzpicture}[scale=0.7]
% \draw[dotted,step=1,gray] (-3,-3) grid (3,2);
\draw[line width = 1pt] (0,-3) --
(-3,0) -- (-2,1)--(1,1)--
(2,0)--(2,-1) -- (0,-3);
\draw[densely dashdotted, gray, line width = 1.2pt] (0,-3) -- (0,1);
\draw[densely dashdotted, gray, line width = 1.2pt] (-3,0) -- (2,0);
\draw[densely dashdotted, gray, line width = 1.2pt] (2,-1) -- (0,1);
\node at (0,-3) [below] {\large{$-2$}};
\node at (-3,0) [left] {\large{$-2$}};
\node at (-2,1) [left] {\large{$-2$}};
\node at (1,1) [above] {\large{$-2$}};
\node at (2,0) [right] {\large{$-2$}};
\node at (2,-1) [below] {\large{$-2$}};
\node at (0,1) [above left] {\large{$-1$}};
\node at (0,0) [below left] {\large{$-\nicefrac{1}{2}$}};
\node at (1,0) [below] {\large{$-1$}};
\foreach \i in {-3,...,3}{
\foreach \j in {-3,...,2}{
\draw[gray] (\i,\j) node {\tiny{$\circ$}};
}
}
\draw (0,0) node {\textbullet};
\end{tikzpicture}
\caption*{$\deg \Phi $}
\end{subfigure}
\caption{Divisorial polytope for threefold 2.30} \label{fig:divpo323}
\end{figure}
Then numerically we can find an approximation to \(\xi\) as the point:
\[
(x_0,x_1) = (0.26617786, 0.67164063).
\]
Setting \(\epsilon = 10^{-5}\), consider the square containing our approximation, given by:
\[
D = [x_0 - \epsilon,x_0+\epsilon] \times [x_1 - \epsilon, x_1 + \epsilon]
\]
Subdividing each edge of the boundary \(\partial D\) into line segments of length \(\epsilon/1500\), we use interval arithmetic to verify that the gradient of \(h\) is positive in the outer normal direction for each of these segments, in fact \(\nabla_n G > 5.536 \cdot 10^{-6}\) along \(\partial D\). Once again it remains to check the positivity of the Donaldson-Futaki invariant for each degeneration. The degenerations of this threefold correspond to the polytopes:
\begin{figure}[H]
\centering
\begin{subfigure}[b]{0.4\textwidth}
\centering
\tdplotsetmaincoords{70}{130}{}
\begin{tikzpicture}[%
tdplot_main_coords,scale=1,
>=stealth
]
\draw[fill=mycyan,opacity=1] (0,-3,1) -- (-3,0,1) -- (1,0,-1) -- (2,-1,-1) -- cycle;
\draw[fill=mycyan,opacity=1] (1,0,-1) -- (-3,0,1) -- (-2,1,1) -- (0,1,0) -- cycle;
\draw[fill=mycyan,opacity=1] (1,0,-1) -- (2,0,-1) -- (2,-1,-1) -- cycle;
\draw[fill=mycyan,opacity=1] (0,1,1) -- (-2,1,1) -- (0,1,0) -- (1,1,0) -- cycle;
\draw[thick,dotted] (0,0,0) -- (0,0,1.2);
\draw[thick,dotted] (0,0,0) -- (1,0,0);
\draw[thick,dotted] (0,0,0) -- (0,1,0);
\draw[fill=mycyan,opacity=0.7] (0,-3,1) -- (-3,0,1) -- (-2,1,1) -- (0,1,1) -- cycle;
\draw[fill=mycyan,opacity=0.7] (0,-3,1) -- (0,1,1) -- (1,1,0) -- (2,0,-1) -- (2,-1,-1) -- cycle;
\draw[thick,->,dotted] (0,0,1.2) -- (0,0,2);
\draw[thick,->,dotted] (1,0,0) -- (3,0,0);
\draw[thick,->,dotted] (0,1,0) -- (0,2,0);
\draw[fill=mycyan,opacity=0.8] (0,1,0) -- (1,1,0) -- (2,0,-1) -- (1,0,-1) -- cycle;
\end{tikzpicture}
\caption{\(\Delta_{0}\)}
\end{subfigure}
\begin{subfigure}[b]{0.4\textwidth}
\centering
\tdplotsetmaincoords{50}{120}{}
\begin{tikzpicture}[%
tdplot_main_coords,scale=1,
>=stealth
]
\draw[fill=mycyan,opacity=1] (0,-3,-2) -- (-3,0,1) -- (-2,1,1) -- (0,1,0) -- cycle;
\draw[fill=mycyan,opacity=1] (0,-3,-2) -- (2,-1,0) -- (0,1,0) -- cycle;
\draw[fill=mycyan,opacity=1] (2,-1,0) -- (0,1,0) -- (1,1,1) -- (2,0,1) -- cycle;
\draw[thick,dotted] (0,0,0) -- (0,0,1);
\draw[thick,dotted] (0,0,0) -- (1.4,0,0);
\draw[thick,dotted] (0,0,0) -- (0,1,0);
\draw[fill=mycyan,opacity=0.8] (0,1,0) -- (1,1,1) -- (-2,1,1) -- cycle;
\draw[fill=mycyan,opacity=0.8] (1,1,1) -- (-2,1,1) -- (-3,0,1) -- (2,0,1) -- cycle;
\draw[fill=mycyan,opacity=0.8] (0,-3,-2) -- (2,-1,0) --(2,0,1) -- (-3,0,1) -- cycle;
\draw[thick,->,dotted] (0,0,1) -- (0,0,2);
\draw[thick,->,dotted] (1.4,0,0) -- (3,0,0);
\draw[thick,->,dotted] (0,1,0) -- (0,2,0);
\end{tikzpicture}
\caption{\(\Delta_{1}\)}
\end{subfigure}
\vskip\baselineskip
\begin{subfigure}[b]{0.4\textwidth}
\centering
\tdplotsetmaincoords{70}{150}{}
\begin{tikzpicture}[%
tdplot_main_coords,scale=1,
>=stealth
]
\draw[fill=mycyan,opacity=1] (-2,1,-1) -- (-3,0,-1) -- (0,0,-1) -- (0,1,-1) -- cycle;
\draw[fill=mycyan,opacity=1] (0,0,-1) -- (-3,0,-1) -- (0,-3,2) -- cycle;
\draw[fill=mycyan,opacity=1] (0,0,-1) -- (2,0,1) -- (2,-1,2) -- (0,-3,2) -- cycle;
\draw[thick,dotted] (0,0,0) -- (0,0,1);
\draw[thick,dotted] (0,0,0) -- (1,0,0);
\draw[thick,dotted] (0,0,0) -- (0,1,0);
\draw[fill=mycyan,opacity=1] (1,1,0) -- (2,0,1) -- (0,0,-1) -- (0,1,-1) -- cycle;
\draw[fill=mycyan,opacity=0.7] (-3,0,-1) -- (0,-3,2) -- (2,-1,2) -- (0,1,0) -- (-2,1,-1) -- cycle;
\draw[fill=mycyan,opacity=0.7] (1,1,0) -- (0,1,0) -- (-2,1,-1) -- (0,1,-1) -- cycle;
\draw[fill=mycyan,opacity=0.7] (0,1,0) -- (1,1,0) -- (2,0,1) -- (2,-1,2) -- cycle;
\draw[thick,->,dotted] (0,0,1) -- (0,0,2);
\draw[thick,->,dotted] (1,0,0) -- (3,0,0);
\draw[thick,->,dotted] (0,1,0) -- (0,3,0);
\end{tikzpicture}
\caption{\(\Delta_{\infty}\)}
\end{subfigure}
\begin{subfigure}[b]{0.4\textwidth}
\centering
\tdplotsetmaincoords{70}{130}{}
\begin{tikzpicture}[%
tdplot_main_coords,scale=1,
>=stealth
]
\draw[fill=mycyan,opacity=1] (-3,0,1) -- (-2,1,1) -- (0,1,0) -- (0,0,-1/2) -- cycle;
\draw[fill=mycyan,opacity=1] (-3,0,1) -- (0,-3,1) -- (0,0,-1/2) -- cycle;
\draw[fill=mycyan,opacity=1] (2,-1,1) -- (0,-3,1) -- (0,0,-1/2) -- (1,0,0) -- (2,0,1) -- cycle;
\draw[thick,dotted] (0,0,0) -- (1,0,0);
\draw[thick,dotted] (0,0,0) -- (0,1,0);
\draw[thick,dotted] (0,0,0) -- (0,0,1);
\draw[fill=mycyan,opacity=0.7] (-3,0,1) -- (0,-3,1) -- (2,-1,1) -- (2,0,1) -- (1,1,1) -- (-2,1,1) -- cycle;
\draw[fill=mycyan,opacity=0.7] (1,1,1) -- (0,1,0) -- (-2,1,1) -- cycle;
\draw[fill=mycyan,opacity=0.7] (1,1,1) -- (2,0,1) -- (1,0,0) -- (0,1,0) -- cycle;
\draw[fill=mycyan,opacity=0.7] (0,1,0) -- (0,0,-1/2) -- (1,0,0) -- cycle;
\draw[fill=mycyan,opacity=1] (2,0,1) -- (2,-1,1) -- (1,0,0) -- cycle;
\draw[thick,->,dotted] (1,0,0) -- (3,0,0);
\draw[thick,->,dotted] (0,1,0) -- (0,2,0);
\draw[thick,->,dotted] (0,0,1) -- (0,0,2);
\end{tikzpicture}
\caption{\(\Delta_{\gen}\)}
\end{subfigure}
\caption{Special configuration polyhedra for 3.23} \label{fig:degen323}
\end{figure}
Interval arithmetic gives the following lower bounds on the Donaldson-Futaki invariants:
\begin{align*}
h_0(\xi_2) &> 1.2766 \\
h_1(\xi_2) &> 1.8401 \\
h_\infty(\xi_2) &> 0.1004 \\
h_{\gen}(\xi_2) &> 3.4443
\end{align*}
We can therefore conclude that the threefold 3.23 is \(K\)-stable, and must admit a non-trivial K\"ahler-Ricci soliton. See also Appendix~\ref{app:code} for the SageMath code of the calculations.
\end{example}
\section{Barvinok Integration} \label{sec:barvinok}
Here we describe the recursive algorithm used to symbolically calculate closed forms of the integrals used in the proofs of the previous section. We are interested in integrals of the following form:
\begin{equation} \label{eq:barintegral1}
\int_{P} l_1(x) e^{l_2(x)}
\end{equation}
for some linear functions \(l_1,l_2\) and some polytope \(P\). If we were working with surfaces, as is done earlier in \cite{cable2018classification}, then \(P\) is just an interval and the integral can be computed easily by hand. In theory, one could subdivide and parameterize the domain for higher dimensions, but this quickly makes the process of integration a very time-consuming and computation-heavy task, for even mildly complicated \(P\).
In \cite{Barvinok1992} Stoke's theorem is applied to a polytope domain to obtain formulae for integrals of a similar form. In particular we make use of the following:
\begin{lemma}[\cite{Barvinok1992}] \label{lem:bar}
Let \(\{F_i\}_i\) be the set of all facets of a polytope \(P\), and \(\mu_i\) be the Lebesgue measure on the affine hull of \(F_i\) induced from \(dx\) on \(\RR^n\). Denote by \(n_i\) the outer unit normal to \(F_i\). Let \(c \in \CC^n\) and \(\Lambda \in \RR^n\) such that \(\langle \lambda, c \rangle \neq 0\). Then
\begin{equation} \label{eq:barv}
\int_P e^{\langle c, x \rangle} dx = \frac{1}{\langle c , \lambda \rangle} \sum_i \langle n_i, \lambda \rangle \int_{F_i} e^{\langle c, x \rangle} d \mu_i.
\end{equation}
\end{lemma}
We now outline how we implement this in the form of a recursive algorithm. Care must be taken to ensure the correct scaling is used when applying Lemma~\ref{} with induced Duistermaat Heckmann measures \(\nu_i\) instead of induced Lebesgue measures \(\mu_i\), but this amounts to using lattice-primitive normals rather than Lebesgue unit normals. We will only describe how our algorithm works for \(l_1 = 1\), as the general case may be obtained through integration by parts.
First we describe certain constructions needed in the recursion process. Any facet \(F\) of a polytope \(P\) is given by the intersection of \(P\) with some halfspace:
\[
\langle a, x \rangle = \langle a, u_0 \rangle
\]
for some primitive element \(a \in N\) and a choice of vertex \(u_0 \in \Vert(F)\). Consider the sublattice \(M_F := \ker a\). Consider the inclusion:
\[
\iota:M_F \to M.
\]
Pick a section:
\[
s: M \to M_F
\]
given by a matrix with rows forming a basis of primitive lattice elements of \(M_F\). We may identify \(F \cong P_F := F - u_0\). Set \(c_F = \iota^*(c)\), and \(\lambda_F = s(\lambda)\).
We can now use the formula \ref{eq:barv} to define a recursive function \(\text{Barv}\) to compute the integral \(\int_P e^{ \langle c , \rangle x} dx\). It takes input \((N,F,c,\lambda)\). We have the following relation:
\[
\text{Barv}(M,F,c,\lambda) = \sum_F \frac{e^{\langle c, u_0 \rangle} }{\langle c, \lambda \rangle} \cdot \langle \lambda, n_F \rangle \text{Barv}(M_F, P_F,c_F,\lambda_F)
\]
We give our algorithm in pseudocode below.
\IncMargin{1em}
\begin{algorithm}[h] \label{alg1}
\SetKwInOut{Input}{input}\SetKwInOut{Output}{output}
\Input{A tuple \((N,P,c,\lambda)\) as described above, with \(\lambda\) sufficiently general.}
\Output{The integral \(\int_P e^{\langle c, x \rangle} dx\)}
\BlankLine
\(I \leftarrow 0\)\;
\eIf{\(c = 0\)}{
\eIf{\(\dim P = 0\)}{
\Return \(1\)\;
}{
\Return \(\vol_{\nu_P}(P)\)\;
}
}{
\For{\(F\) a facet of \(P\)}{
\(u_0 \leftarrow\) a vertex of \(F\)\;
\(M_F \leftarrow\) the ambient lattice of \(F\)\;
\(n_F \leftarrow\) the primitive outer normal to \(M_F\)\;
\(s \leftarrow\) an appropriate section of \(M_F \subset M\)\;
\(P_F \leftarrow F - u_0\)\;
\(c_F \leftarrow \iota^*(c)\)\;
\(\lambda_F \leftarrow s(\lambda)\)\;
\(\text{coeff}_F \leftarrow \frac{e^{\langle c, u_0 \rangle} }{\langle c, \lambda \rangle} \cdot \langle \lambda, n_F \rangle\)\;
\(I \leftarrow I + \text{coeff} \cdot \text{Barvinok}(N_F,P_F,c_F,\lambda_F)\)\;
}
}
\Return I
\caption{\(\text{Barv}(M,P,c,\lambda)\)}\label{algo_disjdecomp}
\end{algorithm}
Caching was later added, by S\"u\ss, to reduce computation time. The full SageMath code is included in Appendix~\ref{app:code}.
\newpage
\begin{example}
Suppose \(P = \conv( \{ (\pm 1, \pm 1)\}), \ c = (0,1)\). We have facets \(F_1,\dots,F_4\) as labelled in Figure~\ref{fig:intex1}. In this case \(\lambda = (1,1)\) is sufficiently general. The first face we consider is \(F_1\). We pick \(u_0 = (1,-1)\), and we have \(M_F = \ZZ, \ n_F = (1,0)\). Pick \(s = (0,1)\). Now \(P_{F_1} = [0,2] \subset M_F \otimes \RR\), \(c_F = 1\), \(\lambda_F = 1\). We calculate \(\text{coeff}_F = e^{-1}\).
For this branch of the recursion we then calculate:
\[
\text{Barv}(M_F,P_F,c_F,\lambda_F) = \int_0^2 e^x dx.
\]
Applying the algorithm again we obtain \(e^2 - e\). In sum then \(F_1\) contributes \(e^{-1}*(e^2-e) = e-1\) to the integral \(\int_P e^y dx\).
\begin{figure}[h]
\centering
\begin{subfigure}[b]{0.475\textwidth}
\centering
\begin{tikzpicture}[scale=1.3]
\draw[dotted,step=1] (-2,-2) grid (2,2);
\draw[line width = 1.2pt] (1,-1) --
(1,1) -- (-1,1)--(-1,-1)--
(1,-1);
\draw[densely dashdotted,line width = 1.2pt] (-2,0) -- (2,0); \draw[densely dashdotted,line width = 1.2pt] (0,-2) -- (0,2) ;
\draw (0,0) node {\textbullet};
\draw[myorange,->,thick] (0,0) -- (2,2);
\node at (2,2) [above,myorange] {{$\lambda$}};
\node at (1,-1/2) [right,myorange] {{$F_1$}};
\node at (-1/2,1) [above,myorange] {{$F_2$}};
\node at (-1,3/8) [left,myorange] {{$F_3$}};
\node at (-1/2,-1) [below,myorange] {{$F_4$}};
\draw[myorange,->,thick] (0,0) -- (2,2);
\node at (2,2) [above,myorange] {{$\lambda$}};
\end{tikzpicture}
\end{subfigure}
\begin{subfigure}[b]{0.475\textwidth}
\centering
\begin{tikzpicture}[scale=1.3]
\draw[dotted,step=1] (-2,-2) grid (2,2);
\draw (0,0) node {\textbullet};
\draw[myorange,->,thick] (0,0) -- (0,1);
\node at (0,1) [above,myorange] {\large{$c$}};
\end{tikzpicture}
\end{subfigure}
\caption{First level of recursion} \label{fig:intex1}
\end{figure}
\begin{figure}[h]
\centering
\begin{subfigure}[b]{0.475\textwidth}
\centering
\begin{tikzpicture}[scale=1]
\draw[dotted,step=1] (0,-1) -- (0,3);
\draw[line width = 1.2pt] (0,0) -- (0,2);
\draw (0,0) node {\textbullet};
\draw (0,2) node {\tiny{\textbullet}};
\node at (0,1) [right,myorange] {{$P_{F_1}$}};
\draw[->] (0,0) -- (0,1);
\node at (0,1) [left] {{$\lambda_{F_1}$}};
\end{tikzpicture}
\end{subfigure}
\begin{subfigure}[b]{0.475\textwidth}
\centering
\begin{tikzpicture}[scale=1]
\draw[dotted,step=1] (0,-1) -- (0,3);
\draw[->] (0,0) -- (0,1);
\node at (0,1) [above] {{$c_{F_1}$}};
\draw (0,0) node {\textbullet};
\end{tikzpicture}
\end{subfigure}
\caption{Second level of recursion for the branch \(F_1\)} \label{fig:intex2}
\end{figure}
\end{example}