-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoutline_1.1.tex
288 lines (177 loc) · 5.6 KB
/
outline_1.1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
\documentclass[11pt]{article}
\usepackage[letterpaper, margin=1in]{geometry}
\usepackage{amsmath, amssymb, graphicx, epsfig, fleqn}
\setlength{\parindent}{0pt}
\newcommand{\ud}{\,\mathrm{d}}
\everymath{\displaystyle}
\def\FillInBlank{\rule{2.5in}{.01in} }
\pagestyle{empty}
\begin{document}
\begin{center}
\Large
\rm{Math 111}
\\
\rm{Chapter 1: Precalculus Review}
\\
\end{center}
\vspace{0.2in}
\fboxsep0.5cm
(DEFINITION)\\
A {\bf function} is:
\vspace{0.5in}
(EXAMPLES)\\
Relationships that we might think of as a function:
\vspace{0.5in}
Ways that we might describe a function:
\vspace{1.5in}
Relationships that are \emph{not} functions
\vspace{1.5in}
(NOTATION)\\
If $f(x) = \frac{x}{2}-1$ and $g(p) = p^2+2$\\
\vspace{0.5in}
Then $f(4) = $ \hspace{3in} $g(3) = $\\
\vspace{0.5in}
$f(a) = $ \hspace{3in} $g(p+h) = $\\
\vspace{1.5in}
(DEFINITION)\\
The {\bf domain} of a function is:
\vspace{0.5in}
(DEFINITION)\\
The {\bf range} of a function is:
\vspace{0.5in}
(DEFINITION)\\
The {\bf graph} of a function is:
\vspace{0.5in}
(EXAMPLES)\\
What are the domain and range of the following functions? Sketch the graph and label two points on the graph.
\vspace{.25in}
$y(x) = \sqrt{x-5}$
\vspace{1.5in}
$f(x) = \frac{1}{x^2-9}$
\vspace{1.5in}
$p(x) = \sqrt{4-x^2}$
%\vspace{1.5in}
%$q(x) = \frac{x^2-1}{x+1}$
\pagebreak
\begin{center}
\Large
\rm{Linear functions}
\end{center}
(DEFINITIONS)\\
A function $f$ is {\bf linear} if:
\vspace{1.0in}
{\bf Slope}
\vspace{1.5in}
(EXAMPLES)\\
Let $C$ be a temperature measured in degrees Celsius and $F$ be the same temperature measured in degrees Fahrenheit.
We know $F$ is a linear function of $C$ and that $F(0)=32$ and $F(100)=212$. Find a formula for $F(C)$.
\begin{enumerate}
\item{Find a formula for $F(C)$.}
\item{Give an interpretation of the slope. What are the units?}
\end{enumerate}
\vspace{1.5in}
Let $T(t)$ represent the temperature of a lake as a function of time. $T$ is measured in degrees Celsius and $t$ is measured in hours.
Suppose that we know that $T$ is a linear function and
that $T(4) = 6$ and $T(8) = 7$.
\begin{enumerate}
\item{Find $T(t)$ and give an interpretation of the slope. What are the units?}
\item{How much does $T$ change in 10 hours?}
\end{enumerate}
\vspace{1.5in}
For small mammals it has been determined that body mass is proportional to heart mass. If a 4.7 kg dog has a heart mass of 33 g, find
the mass of a 1.8 kg cat. Present your solution in terms of a linear function.
\pagebreak
\begin{center}
\Large
\rm{Piecewise defined functions}
\end{center}
In some cases it is useful to describe functions by giving different output rules depending on
(EXAMPLES)\\
\begin{displaymath}
g(x) = \left\{ \begin{array}{ll}
x^2 & x \ge 1 \\
2-x & x < 1\\
\end{array} \right.
\end{displaymath}
\vspace{1.5in}
\begin{displaymath}
f(x) = \left\{ \begin{array}{ll}
x-1 & x > 0 \\
3 & -2 \le x \le 0\\
2-x & x < -2 \\
\end{array} \right.
\end{displaymath}
\vspace{1.5in}
\begin{displaymath}
h(x) = |x|
\end{displaymath}
\vspace{1.5in}
(EXAMPLES) Some situations where piecewise defined functions might make sense:
\pagebreak
\begin{center}
\Large
\rm{Algebra of functions}
\end{center}
If $f$ and $g$ are functions, then so are $f+g$, $f-g$, $fg$, and $\frac{f}{g}$ for the appropriate domain
\\
(EXAMPLE) \\
Suppose $a(t) = t^2 + 1$ represents the population of fish species A, $b(t) = \frac{500}{1+2t}$ represents the population of fish species B, and $p(t)$ represents the average individual mass of a fish of species A, then: \\
\begin{enumerate}
\item{$(a+b)(t) = $ \hspace{2in} and represents }
\item{$(a-b)(t) = $ \hspace{2in} and represents }
\item{$(ap)(t) = $ \hspace{2in} and represents }
\end{enumerate}
If $f$ and $g$ are functions, then so does $f\circ g$ on the appropriate domain
\\
(EXAMPLE) \\
\begin{enumerate}
\item{
Suppose $r(x) = 100(1-1/x)$ represents a rabbit population as a function of $x$, the amount of edible vegetation in a habitat and
$f(r) = \sqrt{r}$ represents the population of foxes as a function of the rabbit population, then: \\
$f\circ r = $ \hspace{2in} and represents
}
\vspace{0.5in}
\item{ If $f(x) = \frac{x}{x+3}$ and $g(x) = \frac{1}{x}$, then \\
$f(g(x)) = $ \hspace{2in} with domain \\
\vspace{0.5in}
$g(f(x)) = $ \hspace{2in} with domain \\
}
\vspace{0.5in}
\item{ If $f(x) = \sqrt{x}$ and $g(x) = x^2+3x$, then \\
$f(g(x)) = $ \hspace{2in} with domain \\
\vspace{0.5in}
$g(f(x)) = $ \hspace{2in} with domain \\
}
\end{enumerate}
\pagebreak
\begin{center}
\Large
\rm{Inverse functions}
\end{center}
(DEFINITION)
If $f$ is a one-to-one function, then $f^{-1}$ is the function that 'undoes' $f$
\vspace{2in}
(EXAMPLES)
\begin{enumerate}
\item{
Let $C$ be a temperature measured in degrees Celsius and $F$ be the same temperature measured in degrees Fahrenheit.
Let $f$ be the function that associates $C$ to $F$. We found earlier that $f(C) = \frac95 C + 32$.\\
Suppose now we know the temperature is 45 degrees Fahrenheit and want to compute the temperature in degrees Celsius.
We can make use of $f^{-1}$.
}
\vspace{3in}
\item{ If $g(x) = x^3$ then $g^{-1}(x) = $ \\
\vspace{0.2in}
If $h(w) = 3w$ then $g^{-1}(w) = $ \\
\vspace{0.2in}
If $f(y) = \frac{1}{y}$ then $f^{-1}(y) = $ \\
\vspace{0.2in}
}
\item{If $g(x) = x^3+4$ then $h^{-1}(x) = $}
\vspace{2in}
\item{If $h(x) = \frac{4x-1}{2x+3}$ then $h^{-1}(x) = $}
\vspace{2in}
\item{If $f(x) = x^2-x$ for $x \ge \frac12 $, then $f^{-1}(x) = $
}
\end{enumerate}
\end{document}