-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_linear.py
136 lines (106 loc) · 4.41 KB
/
main_linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from torchvision.utils import save_image
import numpy as np
from matplotlib import pyplot as plt
# Ref: https://github.com/lyeoni/pytorch-mnist-VAE/blob/master/pytorch-mnist-VAE.ipynb
class VAE(nn.Module):
def __init__(self, x_dim, h_dim1, h_dim2, z_dim):
super(VAE, self).__init__()
# encoder part
self.fc1 = nn.Linear(x_dim, h_dim1)
self.fc2 = nn.Linear(h_dim1, h_dim2)
self.fc31 = nn.Linear(h_dim2, z_dim)
self.fc32 = nn.Linear(h_dim2, z_dim)
# decoder part
self.fc4 = nn.Linear(z_dim, h_dim2)
self.fc5 = nn.Linear(h_dim2, h_dim1)
self.fc6 = nn.Linear(h_dim1, x_dim)
def encoder(self, x):
h = F.relu(self.fc1(x))
h = F.relu(self.fc2(h))
return self.fc31(h), self.fc32(h) # mu, log_var
def sampling(self, mu, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu) # return z sample
def decoder(self, z):
h = F.relu(self.fc4(z))
h = F.relu(self.fc5(h))
return F.sigmoid(self.fc6(h))
def forward(self, x):
mu, log_var = self.encoder(x.view(-1, 784))
z = self.sampling(mu, log_var)
return self.decoder(z), mu, log_var
def loss_function(recon_x, x, mu, log_var):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
return BCE + KLD
def train(epoch, vae, train_loader, optimizer):
vae.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = data.cuda()
optimizer.zero_grad()
recon_batch, mu, log_var = vae(data)
loss = loss_function(recon_batch, data, mu, log_var)
loss.backward()
train_loss += loss.item()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item() / len(data)))
print('====> Epoch: {} Average loss: {:.4f}'.format(epoch, train_loss / len(train_loader.dataset)))
def test(vae, test_loader):
vae.eval()
test_loss = 0
with torch.no_grad():
for data, _ in test_loader:
data = data.cuda()
recon, mu, log_var = vae(data)
# sum up batch loss
test_loss += loss_function(recon, data, mu, log_var).item()
test_loss /= len(test_loader.dataset)
print('====> Test set loss: {:.4f}'.format(test_loss))
def main():
print('this is hw3')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)
bs = 100
# MNIST Dataset
train_dataset = datasets.MNIST(root='./mnist_data/', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root='./mnist_data/', train=False, transform=transforms.ToTensor(), download=False)
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=bs, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=bs, shuffle=False)
vae = VAE(x_dim=784, h_dim1=512, h_dim2=256, z_dim=2)
if torch.cuda.is_available():
vae.cuda()
optimizer = optim.Adam(vae.parameters())
# Training:
for epoch in range(1, 15):
train(epoch, vae, train_loader, optimizer)
test(vae, test_loader)
with torch.no_grad():
z = torch.randn(64, 2).cuda()
sample = vae.decoder(z).cuda()
save_image(sample.view(64, 1, 28, 28), './samples/sample_' + '.png')
images, labels = iter(test_loader).next()
sample_pic = images[0]
#sample_pic = test_dataset[4]
plt.imshow(sample_pic[0].reshape(28, 28), cmap="gray")
plt.show()
with torch.no_grad():
sample_pic = sample_pic.cuda()
result = vae.forward(sample_pic)
print('Got result')
result = result[0].cpu()
plt.imshow(result.reshape(28, 28), cmap="gray")
plt.show()
if __name__ == '__main__':
main()