-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
139 lines (105 loc) · 4.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from matplotlib import pyplot as plt
from model import VAE
# Ref: https://github.com/lyeoni/pytorch-mnist-VAE/blob/master/pytorch-mnist-VAE.ipynb
# Ref: https://towardsdatascience.com/building-a-convolutional-vae-in-pytorch-a0f54c947f71
# Ref: https://blog.floydhub.com/long-short-term-memory-from-zero-to-hero-with-pytorch/
# Ref: (To plot 100 result images) https://medium.com/the-data-science-publication/how-to-plot-mnist-digits-using-matplotlib-65a2e0cc068
# To solve Intel related matplotlib/torch error.
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
def loss_function(recon_x, x, mu, log_var):
BCE = F.binary_cross_entropy(recon_x, x, reduction='sum')
KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
return BCE + KLD, BCE, KLD
def train(epoch, vae, train_loader, optimizer):
vae.train()
train_loss = 0
train_bce = 0
train_kld = 0
for batch_idx, (data, _) in enumerate(train_loader):
# Check GPU:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device == 'cuda':
data = data.cuda()
optimizer.zero_grad()
recon_batch, mu, log_var = vae(data)
loss, bce, kld = loss_function(recon_batch, data, mu, log_var)
hidden = vae.hidden
if isinstance(hidden, tuple):
hidden = (hidden[0].detach(), hidden[1].detach())
else:
hidden = hidden.detach()
vae.hidden = hidden
loss.backward()
train_loss += loss.item()
train_kld += kld
train_bce += bce
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item() / len(data)))
print('====> Epoch: {} Average loss: {:.4f}'.format(epoch, train_loss / len(train_loader.dataset)))
print('====> Epoch: {} Average BCE: {:.4f}'.format(epoch, train_bce / len(train_loader.dataset)))
print('====> Epoch: {} Average KLD: {:.4f}'.format(epoch, train_kld / len(train_loader.dataset)))
loss = train_loss / len(train_loader.dataset)
return_kld = train_kld / len(train_loader.dataset)
return_bce = train_bce / len(train_loader.dataset)
return loss, return_kld.__float__(), return_bce.__float__()
def test(vae, test_loader):
vae.eval()
test_loss = 0
# Check GPU:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
with torch.no_grad():
for data, _ in test_loader:
if device == 'cuda':
data = data.cuda()
recon, mu, log_var = vae(data)
# sum up batch loss
loss, _, _ = loss_function(recon, data, mu, log_var)
test_loss += loss.item()
test_loss /= len(test_loader.dataset)
print('====> Test set loss: {:.4f}'.format(test_loss))
def main():
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)
bs = 100
# MNIST Dataset
train_dataset = datasets.MNIST(root='./mnist_data/', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root='./mnist_data/', train=False, transform=transforms.ToTensor(), download=False)
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=bs, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=bs, shuffle=False)
vae = VAE()
if torch.cuda.is_available():
vae.cuda()
optimizer = optim.Adam(vae.parameters())
# Training:
train_loss_to_plot = []
kl_div_to_plot = []
bce_to_plot = []
for epoch in range(1, 11):
train_loss, kld, bce = train(epoch, vae, train_loader, optimizer)
train_loss_to_plot.append(train_loss)
kl_div_to_plot.append(kld)
bce_to_plot.append(bce)
test(vae, test_loader)
# Saving the trained model:
PATH = './model_new.pth'
torch.save(vae.state_dict(), PATH)
# show loss curve
plt.plot(train_loss_to_plot)
plt.show()
# show KL divergence curve
plt.plot(kl_div_to_plot)
plt.show()
# show BCE curve
plt.plot(bce_to_plot)
plt.show()
if __name__ == '__main__':
main()