-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathfba_data.py
31 lines (29 loc) · 1001 Bytes
/
fba_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# data file for flux balance analysis in systems biology
# From Segre, Zucker et al "From annotated genomes to metabolic flux
# models and kinetic parameter fitting" OMICS 7 (3), 301-316.
import numpy as np
# Stoichiometric matrix
S = np.array([
# M1 M2 M3 M4 M5 M6
[1, 0, 0, 0, 0, 0], # R1: extracellular --> M1
[-1, 1, 0, 0, 0, 0], # R2: M1 --> M2
[-1, 0, 1, 0, 0, 0], # R3: M1 --> M3
[0, -1, 0, 2, -1, 0], # R4: M2 + M5 --> 2 M4
[0, 0, 0, 0, 1, 0], # R5: extracellular --> M5
[0, -2, 1, 0, 0, 1], # R6: 2 M2 --> M3 + M6
[0, 0, -1, 1, 0, 0], # R7: M3 --> M4
[0, 0, 0, 0, 0, -1], # R8: M6 --> extracellular
[0, 0, 0, -1, 0, 0], # R9: M4 --> cell biomass
]).T
m, n = S.shape
vmax = np.array([
10.10, # R1: extracellular --> M1
100, # R2: M1 --> M2
5.90, # R3: M1 --> M3
100, # R4: M2 + M5 --> 2 M4
3.70, # R5: extracellular --> M5
100, # R6: 2 M2 --> M3 + M6
100, # R7: M3 --> M4
100, # R8: M6 --> extracellular
100, # R9: M4 --> cell biomass
])