-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathmit18086_fd_transport_growth.m
68 lines (65 loc) · 1.85 KB
/
mit18086_fd_transport_growth.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
function mit18086_fd_transport_growth(method)
%MIT18086_FD_TRANSPORT_GROWTH
% Applies various finite difference methods for the transport
% equation u_t=u_x. Additionally shows the von Neumann growth
% factor in complex plane.
% Choose method by giving number as parameter. Methods of
% choice are (1) upwind, (2) downwind, (3) centered,
% (4) Lax-Friedrichs, (5) Lax-Wendroff, and (6) Crank-Nicolson.
% 03/2007 by Benjamin Seibold
% http://www-math.mit.edu/~seibold/
% Feel free to modify for teaching and learning.
n = 90; % number of space gridpoints
dt = 1e-2; % time step
tf = 2.4; % final time
if nargin<1, method = 1; end
x = linspace(-1,1,n)';
h = x(2)-x(1);
r = dt/h; disp(sprintf('Courant number: %0.2f',r))
u = ic(x); u0 = u;
I = eye(n);
R = diag(ones(1,n-1),1);
Dxc = (R+diag([-1 zeros(1,n-2) 1])-R')/(2*h);
Dxx = (R-diag([1 2*ones(1,n-2) 1])+R')/h^2;
switch method
case 1
name = 'upwind';
A = (R-I)/h;
case 2
name = 'downwind';
A = (I-R')/h;
case 3
name = 'centered';
A = Dxc;
case 4
name = 'Lax-Friedrichs';
A = Dxc+(h^2/dt/2)*Dxx;
case 5
name = 'Lax-Wendroff';
A = Dxc+(dt/2)*Dxx;
case 6
name = 'Crank-Nicolson';
M = (I-(dt/2)*Dxc)\(I+(dt/2)*Dxc);
end
if not(exist('M')), M = I+dt*A; end
t = linspace(0,2*pi,100);
nh = floor(size(M,1)/2)-1;
g = M(nh+1,1:2*nh+1)*exp(i*(-nh:nh)'*t);
for tn = 1:ceil(tf/dt)
u = M*u;
clf
subplot(1,3,1:2)
plot(x,u0,'b:',x,u,'r.-')
axis([-1 1 -.1 1.1])
title(sprintf('%s , t=%0.2f',name,tn*dt))
subplot(1,3,3)
patch(cos(t),sin(t),.9*[1 1 1])
hold on, plot(g,'r-','linewidth',2), hold off
axis equal
axis(1.5*[-1 1 -1 1])
title('growth factor')
drawnow
end
function y = ic(x)
% initial condition function
y = max((1-4*(x-.5).^2),0).^2;