-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathHOnumeric.py
38 lines (33 loc) · 1.47 KB
/
HOnumeric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
""" From "COMPUTATIONAL PHYSICS" & "COMPUTER PROBLEMS in PHYSICS"
by RH Landau, MJ Paez, and CC Bordeianu (deceased)
Copyright R Landau, Oregon State Unv, MJ Paez, Univ Antioquia,
C Bordeianu, Univ Bucharest, 2017.
Please respect copyright & acknowledge our work."""
# HOnumeric.py: 1-D HO wave functions via rk4
import numpy as np, matplotlib.pylab as plt
from rk4Algor import rk4Algor
rVec = np.zeros((1000),float) # x values for plot
psiVec = np.zeros((1000),float) # Wave function values
fVec = [0]*(2); y = [0]*(2) # Declare dimensions
n = 6 # n = npr L+1
def f(x,y): # ODE RHS
fVec[0] = y[1]
fVec[1] = -(2*n+1-x**2)*y[0]
return fVec
if(n%2==0): y[0]=1e-8 # Set parity
else: y[0]=-1e-8
y[1] = 1.; i = 0
f(0.0,y) # RHS at r = 0
dr = 0.01
for r in np.arange(-5,5,dr): # Compute WF steps of dr
rVec[i] = r
y = rk4Algor(r, dr, 2, y, f)
psiVec[i] = y[0]
i = i+1 # Advance i & r
plt.figure()
plt.plot(rVec,psiVec)
plt.grid()
plt.title('Harmonic Oscillator Wave Function n = 6')
plt.xlabel('x')
plt.ylabel('$\psi(x)$')
plt.show()