-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathHOchargeMat.py
37 lines (32 loc) · 1.44 KB
/
HOchargeMat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
""" From "COMPUTATIONAL PHYSICS" & "COMPUTER PROBLEMS in PHYSICS"
by RH Landau, MJ Paez, and CC Bordeianu (deceased)
Copyright R Landau, Oregon State Unv, MJ Paez, Univ Antioquia,
C Bordeianu, Univ Bucharest, 2017.
Please respect copyright & acknowledge our work."""
# HOchargeMat.py charge in HO plus E field wi Matplotlib
from numpy import *
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
# Initialization
dx = 0.06; dx2 = dx*dx; k0 = 5.5*pi; dt = dx2/8.; xmax = 6.
xs = np.arange(-xmax,xmax+dx/2,dx) # x array
psr = exp(-0.5*(xs/0.5)**2) * cos(k0*xs) # Re Psi
psi = exp(-0.5*(xs/0.5)**2) * sin(k0*xs) # Im Psi
E = 70 # E field
v = 25.0*xs**2 -E*xs # V HO + E
fig=plt.figure()
ax = fig.add_subplot(111, autoscale_on=False,
xlim=(-xmax,xmax), ylim=(0, 1.5))
ax.grid() # Plot grid
plt.title("Charged Harmonic Oscillator in E Field")
line, = ax.plot(xs, psr*psr+psi*psi, lw=2)
def animate(dum):
psr[1:-1] = psr[1:-1] - (dt/dx2)*(psi[2:]+psi[:-2]
-2*psi[1:-1]) + dt*v[1:-1]*psi[1:-1]
psi[1:-1] = psi[1:-1] + (dt/dx2)*(psr[2:]+psr[:-2]
-2*psr[1:-1]) - dt*v[1:-1]*psr[1:-1]
line.set_data(xs,psr**2+psi**2)
return line,
ani = animation.FuncAnimation(fig, animate, 1, blit=True)
plt.show()