-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathFit.py
44 lines (40 loc) · 2.13 KB
/
Fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
""" From "COMPUTATIONAL PHYSICS" & "COMPUTER PROBLEMS in PHYSICS"
by RH Landau, MJ Paez, and CC Bordeianu (deceased)
Copyright R Landau, Oregon State Unv, MJ Paez, Univ Antioquia,
C Bordeianu, Univ Bucharest, 2017.
Please respect copyright & acknowledge our work."""
# Fit.py: Linear least square fit via matrix solution
import pylab as p
from numpy import*; from numpy.linalg import inv, solve
Nd = 7
A = zeros( (3,3), float ); bvec = zeros((3,1), float) # Declare
ss= sx = sxx = sy = sxxx = sxxxx = sxy = sxy = sxxy = 0.
x = array([1., 1.1, 1.24, 1.35, 1.451, 1.5, 1.92])
y = array([0.52, 0.8, 0.7, 1.8, 2.9, 2.9, 3.6])
sig = array([0.1, 0.1, 0.2, 0.3, 0.2, 0.1, 0.1]) # Error bars
xRange = arange(1.0, 2.0, 0.1) # For plots
p.plot(x, y, 'bo') # Blue data
p.errorbar(x,y,sig)
p.title('Least Square Fit of Parabola to Blue Data')
p.xlabel('x'); p.ylabel('y'); p.grid(True) # Plot grid
for i in range(0, Nd):
sig2 = sig[i] * sig[i]
ss += 1. / sig2; sx += x[i]/sig2; sy += y[i]/sig2
rhl = x[i] * x[i]; sxx += rhl/sig2; sxxy += rhl*y[i]/sig2
sxy += x[i]*y[i]/sig2; sxxx +=rhl*x[i]/sig2; sxxxx +=rhl*rhl/sig2
A = array([ [ss,sx,sxx], [sx,sxx,sxxx], [sxx,sxxx,sxxxx] ])
bvec = array([sy, sxy, sxxy])
xvec = multiply(inv(A), bvec) # Invert matrix
print('\n x via Inverse A\n', xvec, '\n' )
xvec = solve(A, bvec) # Solve via elimination
print('\n x via Elimination \n', xvec, '\n Fit to Parabola\n')
print('y(x) = a0 + a1 x + a2 x^2\n a0 =', x[0],'a1 =', x[1], 'a2 =', x[2])
print('\n i xi yi yfit ')
for i in range(0, Nd):
s = xvec[0] + xvec[1]*x[i] + xvec[2]*x[i]*x[i]
print(" %d %5.3f %5.3f %8.7f" %(i, x[i], y[i], s))
# red line is the fit, red dots the fits at y[i]m
curve = xvec[0] + xvec[1]*xRange + xvec[2]*xRange**2
points = xvec[0] + xvec[1]*x + xvec[2]*x**2
p.plot(xRange, curve,'r', x, points, 'ro')
p.show()