-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathdescriptiveStatistics.r
1149 lines (974 loc) · 32.3 KB
/
descriptiveStatistics.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# descriptiveStatistics.r
#
# script file for computing descriptive statistics on financial returns
# Examples are used in the chapter Descriptive Statistics for Financial Data
#
# author: Eric Zivot
# created: September 18, 2008
#
# To do
# 1. Change zoo objects to xts objects. More functions work with xts and xts has better
# subsetting
# 2. Change data downloads from get.hist.quote() in tseries to getSymbols from quantmod
# 3. label each example and prepare for knitr integration
# revision history:
#
# February 2, 2015
#
# July 10, 2014
# Combined analysis of daily and monthly data. focus on simple returns instead of cc returns.
# rename data objects to be consistent with lower camel case
# July 15, 2013
# updated examples for Summer 2013
# July 11, 2012
# updated examples for Summer 2012
# July 14, 2011
# updated example for Summer 2011
# October 20, 2009
# updated examples for Fall 2009 class
# October 13, 2008
#
# Core R functions used:
#
# acf compute sample autocovariances or autocorrelations
# apply apply function to rows or columns of matrix
# args determine agruments of a function
# boxplot compute boxplot
# cbind combine data objects vertically
# class determine class of object
# colIds get column names from object
# cor compute sample correlation matrix
# density compute smoothed histogram
# ecdf compute empirical CDF
# end get end date of time series
# help invoke help system
# hist compute histogram
# legend add legend to graph
# length compute column length of matrix
# library load R package
# mean compute sample mean
# names show names of object
# par set graphics parameters
# plot generic plot function
# points add points to a graph
# qqline add line to qq-plot
# qqnorm qq-plot against normal distribution
# qt compute quantiles of student t distribution
# rlnorm generate random data from log-normal distribution
# rt generate random data from student t distribution
# scale standardize a vector of data
# pnorm compute normal CDF
# seq generate sequence of numbers
# sort sort data
# start get start date of time series
# stdev compute sample standard deviation
# ts.plot time series plot
# var compute sample variance or covariance matrix
# ? invoke help system
#
# R packages used
# PerformanceAnalytics
# skewness compute sample skewness
# kurtosis compute excess kurtosis
# tseries Time series and computational finance
# get.hist.quote load data from Yahoo!
# zoo
# plot.zoo plot zoo object
# sn
# rsn simulate from skew-normal distribution
# dsn compute pdf of skew-normal distribution
# set options
options(digits=4, width=70)
# load packages
library(car)
library(corrplot)
library(PerformanceAnalytics)
library("tseries")
library("zoo")
library(sn)
# set paths for loading and saving objects
# set globalPath to point to MFTSR directory on local computer
# globalPath = "C:/Users/ezivot.SOCIOLOGY/Dropbox/FinBook/"
globalPath = "C:/Users/ezivot/Dropbox/FinBook/"
setwd(globalPath)
loadPath = paste(globalPath, "Data/", sep="")
savePath = paste(globalPath, "GRAPHS/", sep="")
Rpath = paste(globalPath, "R/", sep="")
###############################################################################################
# Sub-Section Example Data
###############################################################################################
#
# get monthly and daily adjusted closing price data on MSFT and SP500 from Yahoo
# using the tseries function get.hist.quote. Set sample to Jan 1998 through
# May 2012. Note: if you are not careful with the start and end dates
# or if you set the retclass to "ts" then results might look weird
#
##
## Ex. Getting daily and monthly adjusted closing price data from Yahoo! in R
##
##
## chunk
##
msftPrices = get.hist.quote(instrument="msft", start="1998-01-01",
end="2012-05-31", quote="AdjClose",
provider="yahoo", origin="1970-01-01",
compression="m", retclass="zoo")
sp500Prices = get.hist.quote(instrument="^gspc", start="1998-01-01",
end="2012-05-31", quote="AdjClose",
provider="yahoo", origin="1970-01-01",
compression="m", retclass="zoo")
msftDailyPrices = get.hist.quote(instrument="msft", start="1998-01-01",
end="2012-05-31", quote="AdjClose",
provider="yahoo", origin="1970-01-01",
compression="d", retclass="zoo")
sp500DailyPrices = get.hist.quote(instrument="^gspc", start="1998-01-01",
end="2012-05-31", quote="AdjClose",
provider="yahoo", origin="1970-01-01",
compression="d", retclass="zoo")
class(msftPrices)
colnames(msftPrices)
start(msftPrices)
end(msftPrices)
head(msftPrices, n=3)
head(msftDailyPrices, n=3)
##
## chunk
##
# add column names
# change date index class of monthly prices to yearmon
colnames(msftPrices) = colnames(msftDailyPrices) = "MSFT"
colnames(sp500Prices) = colnames(sp500DailyPrices) = "SP500"
index(msftPrices) = as.yearmon(index(msftPrices))
index(sp500Prices) = as.yearmon(index(sp500Prices))
##
## chunk
##
# create zoo object with both prices
msftSp500Prices = merge(msftPrices, sp500Prices)
msftSp500DailyPrices = merge(msftDailyPrices, sp500DailyPrices)
head(msftSp500Prices, n=3)
head(msftSp500DailyPrices, n=3)
##
## chunk
##
# compute simple returns
msftRetS = Return.calculate(msftPrices, method="simple")
msftDailyRetS = Return.calculate(msftDailyPrices, method="simple")
sp500RetS = Return.calculate(sp500Prices, method="simple")
sp500DailyRetS = Return.calculate(sp500DailyPrices, method="simple")
msftSp500RetS = Return.calculate(msftSp500Prices, method="simple")
msftSp500DailyRetS = Return.calculate(msftSp500DailyPrices, method="simple")
##
## chunk
##
# remove first NA observation
msftRetS = msftRetS[-1]
msftDailyRetS = msftDailyRetS[-1]
sp500RetS = sp500RetS[-1]
sp500DailyRetS = sp500DailyRetS[-1]
msftSp500RetS = msftSp500RetS[-1]
msftSp500DailyRetS = msftSp500DailyRetS[-1]
##
## chunk
##
# compute cc returns
msftRetC = log(1 + msftRetS)
sp500RetC = log(1 + sp500RetS)
msftSp500RetC = merge(msftRetC, sp500RetC)
##
## End example
##
###############################################################################################
# Sub-Section Time Plots
###############################################################################################
# look at help file for plot method for zoo objects
?plot.zoo
##
## Ex. Time plots of monthly prices and returns.
##
# plot individual prices in separate graphs
plot(msftPrices,main="Monthly closing price of MSFT",
ylab="Price", lwd=2, col="blue")
plot(sp500Prices,main="Monthly closing price of SP500",
ylab="Price", lwd=2, col="blue")
##
## chunk
##
# plot individual prices in two panel graph
# Figure
win.metafile(filename=paste(savePath, "figDSmonthlyPrices.emf", sep=""))
plot(msftSp500Prices, main="", lwd=2, col="blue")
dev.off()
##
## chunk
##
# put returns on the same plot in separate panels
# panel function for plot.zoo to add horizontal line at zero in each panel
my.panel <- function(...) {
lines(...)
abline(h=0)
}
# Figure
win.metafile(filename=paste(savePath, "figDSmonthlyReturns.emf", sep=""))
plot(msftSp500RetS, main="", panel=my.panel, lwd=2, col="blue")
dev.off()
##
## End Example
##
##
## Ex. Time plots of monthly prices and returns.
##
##
## chunk
##
# put returns on same plot in one panel and add a horizontal line
# Figure
win.metafile(filename=paste(savePath, "figDSmonthlyReturns2.emf", sep=""))
plot(msftSp500RetS, plot.type="single", main="",
col = c("red", "blue"), lty=c("dashed", "solid"),
lwd=2, ylab="Returns")
abline(h=0)
legend(x="bottomright", legend=colnames(msftSp500RetS),
lty=c("dashed", "solid"), lwd=2,
col=c("red","blue"))
dev.off()
##
## End Example
##
# use PerformanceAnalytics function chart.TimeSeries for nicer time series graphs
chart.TimeSeries(msftRetC)
chart.TimeSeries(MSFTsp500RetC)
# show two graphs
par(mfrow=c(2,1))
chart.TimeSeries(msftRetC)
chart.TimeSeries(sp500RetC)
par(mfrow=c(1,1))
# use layout for two graphs - same as above
layout(matrix(c(1,2), 2, 1))
chart.TimeSeries(msftRetC)
chart.TimeSeries(sp500RetC)
layout(matrix(1, 1, 1))
##
## Ex. Comparing simple and continuously compounded returns
##
##
## chunk
##
retDiff = msftRetS - msftRetC
dataToPlot = merge(msftRetS, msftRetC, retDiff)
my.panel <- function(...) {
lines(...)
abline(h=0)
}
win.metafile(filename=paste(savePath, "figDScompareReturns.emf", sep=""))
plot(dataToPlot, plot.type="multiple", main="",
panel = my.panel,
lwd=2, col=c("black", "blue", "red"))
dev.off()
##
## End Example
##
#
# Ex. Plotting Daily Returns
#
##
## chunk
##
win.metafile(filename=paste(savePath, "figDSdailyReturns.emf", sep=""))
plot(msftSp500DailyRetS, main="",
panel=my.panel, col=c("black", "blue"))
dev.off()
##
## End Example
##
##
## Ex. Equity curves for Microsoft and S&P 500 monthly returns
##
##
## chunk
##
equityCurveMsft = cumprod(1 + msftRetS)
equityCurveSp500 = cumprod(1 + sp500RetS)
dataToPlot = merge(equityCurveMsft, equityCurveSp500)
# Figure
win.metafile(filename=paste(savePath, "figDSmonthlyCumulativeReturns.emf", sep=""))
plot(dataToPlot, plot.type="single", ylab="Cumulative Returns",
col=c("black", "blue"), lwd=2)
legend(x="topright", legend=c("MSFT", "SP500"),
col=c("black", "blue"), lwd=2)
dev.off()
##
## End Example
##
# use as end of chapter exercise
chart.CumReturns(msftSp500RetS, wealth.index = 1, main="",
colorset = c("black", "blue"),
legend.loc = "topright")
##
## Ex. Drawdowns
##
# to be completed
###############################################################################################
# Sub-Section: Descriptive Statistics for the Distribution of Returns
###############################################################################################
#
# Sub-sub-section: histograms
# use hist() command
args(hist)
?hist
hist(msftRetS, main="Histogram of MSFT monthly returns",
col="cornflowerblue")
# scale histogram so that total area = 1
hist(msftRetS, main="Histogram of MSFT monthly returns",
probability=TRUE, col="cornflowerblue")
# histogram of S&P 500 data
hist(sp500RetS, main="Histogram of SP500 monthly returns",
col="cornflowerblue")
##
## Ex. Histograms for the daily and monthly returns on Microsoft and the S&P 500 index
##
##
## chunk
##
# plot both histograms on same graph
# note different scales
# Figure
win.metafile(filename=paste(savePath, "figDSmsftsp500histograms.emf", sep=""))
par(mfrow=c(2,2))
hist(msftRetS, main="", col="cornflowerblue")
hist(msftDailyRetS, main="", col="cornflowerblue")
hist(sp500RetS, main="", col="cornflowerblue")
hist(sp500DailyRetS, main="", col="cornflowerblue")
par(mfrow=c(1,1))
dev.off()
##
## chunk
##
# use same breakpoints for both histograms
msftHist = hist(msftRetS, plot=FALSE, breaks=15)
class(msftHist)
names(msftHist)
# Figure
win.metafile(filename=paste(savePath, "figDSmsftsp500histograms2.emf", sep=""))
par(mfrow=c(2,2))
hist(msftRetS, main="", col="cornflowerblue")
hist(msftDailyRetS, main="", col="cornflowerblue",
breaks=msftHist$breaks)
hist(sp500RetS, main="", col="cornflowerblue",
breaks=msftHist$breaks)
hist(sp500DailyRetS, main="", col="cornflowerblue",
breaks=msftHist$breaks)
par(mfrow=c(1,1))
dev.off()
##
## End Example
##
# Use PerformanceAnalytics function chart.Histogram
chart.Histogram(msftRetC, colorset = "cornflowerblue")
##
## Ex. Are Microsoft returns normally distributed? A first look.
##
##
## chunk
##
# create simulated iid Gaussian data with same mean and SD
# as MSFT for both monthly and daily simple returns
set.seed(123)
gwnDaily = rnorm(length(msftDailyRetS), mean=mean(msftDailyRetS),
sd=sd(msftDailyRetS))
gwnDaily = zoo(gwnDaily, index(msftDailyRetS))
gwnMonthly = rnorm(length(msftRetS), mean=mean(msftRetS),
sd=sd(msftRetS))
gwnMonthly = zoo(gwnMonthly, index(msftRetS))
# compare gwn to monthly returns
par(mfrow=c(2,1))
plot(msftRetS,main="Monthly returns on MSFT", lwd=2, col="blue")
abline(h=0)
ts.plot(gwnMonthly, main="GWN with same mean and sd as MSFT",
lwd=2, col="blue")
abline(h=0)
par(mfrow=c(1,1))
# shows time plots and histograms together for Microsoft monthly returns and GWN
# could also use type="h
##
## chunk
##
win.metafile(filename=paste(savePath, "figDScompareMSFTnormal.emf", sep=""))
par(mfrow=c(2,2))
plot(msftRetS, main="Monthly Returns on MSFT",
lwd=2, col="blue", ylim=c(-0.4, 0.4))
abline(h=0)
plot(gwnMonthly, main="Simulated Normal Returns",
lwd=2, col="blue", ylim=c(-0.4, 0.4))
abline(h=0)
hist(msftRetS, main="", col="cornflowerblue",
xlab="returns")
hist(gwnMonthly, main="", col="cornflowerblue",
xlab="returns", breaks=msftHist$breaks)
par(mfrow=c(1,1))
dev.off()
# shows time plots and histograms together for Microsoft monthly returns and GWN
# could also use type="h
##
## chunk
##
msftDailyHist = hist(msftDailyRetS, plot=FALSE, breaks=15)
win.metafile(filename=paste(savePath, "figDScompareMSFTnormalDaily.emf", sep=""))
par(mfrow=c(2,2))
plot(msftDailyRetS, main="Monthly Returns on MSFT",
lwd=2, col="blue", ylim=c(-0.15, 0.15))
abline(h=0)
plot(gwnDaily, main="Simulated Normal Returns",
lwd=2, col="blue", ylim=c(-0.15, 0.15))
abline(h=0)
hist(msftDailyRetS, main="", col="cornflowerblue",
xlab="returns")
hist(gwnDaily, main="", col="cornflowerblue",
xlab="returns", breaks=msftDailyHist$breaks)
par(mfrow=c(1,1))
dev.off()
##
## End Example
##
#
# sub-sub-section smoothed histograms
#
# use density() command
?density
args(density)
##
## Ex. Smoothed histogram for Microsoft monthly returns
##
##
## chunk
##
MSFT.density = density(msftRetS)
# put histogram and density plot on same graph
# Figure
win.metafile(filename=paste(savePath, "figDSsmoothedHistogramMsft.emf", sep=""))
hist(msftRetS, main="", xlab="Microsoft Monthly Returns",
col="cornflowerblue", probability=T, ylim=c(0,5))
points(MSFT.density,type="l", col="orange", lwd=2)
dev.off()
##
## End Example
##
# look at density object
class(MSFT.density)
names(MSFT.density)
MSFT.density
# do the same for s&p 500
SP500.density = density(sp500RetS)
plot(SP500.density,type="l",xlab="Monthly return", col="orange", lwd=2,
ylab="density estimate",main="Smoothed histogram: SP500")
# combine density plots on one graph
hist(sp500RetS, main="Histogram and smoothed density",
probability=T, ylim=c(0,10), col="cornflowerblue")
points(SP500.density,type="l", lwd=2, col="orange")
#
# sub-sub-section Empirical CDF
#
# compute and plot empirical distribution function for simulated gaussian data
n1 = length(gwnMonthly)
plot(sort(coredata(gwnMonthly)),(1:n1)/n1,type="s",ylim=c(0,1), col="cornflowerblue", lwd=2,
main="Empirical CDF of Gaussian data", ylab="#x(i) <= x")
# compare empirical cdf to standard normal cdf for simulated gaussian data
z1 = scale(coredata(gwnMonthly)) # standardize to have mean zero and sd 1
n1 = length(gwnMonthly)
F.hat = 1:n1/n1 # empirical cdf
x1 = sort(z1) # sort from smallest to largest
y1 = pnorm(x1) # compute standard normal cdf at x
# The following plot options are used
# type determine type of plot: "l" is line plot; "s" is step plot
# lty line type: 1 is solid line; 3 is dot-dashed line
# lwd line thickness: higher values give thicker lines
# col line color: 1 is black, 2 is blue etc.
# For help on plot options, see help(par)
plot(x1,y1,main="Empirical CDF vs. Normal CDF for Gaussian data",
type="l",lwd=2,xlab="standardized gwn",ylab="CDF")
points(x1,F.hat, type="s", lty=1, lwd=3, col="orange")
legend(x="topleft",legend=c("Normal CDF","Empirical CDF"),
lty=c(1,1), lwd=2, col=c("black","orange"))
# compare empirical cdf to standard normal cdf for MSFT returns
z1 = scale(coredata(msftRetS)) # standardize to have mean zero and sd 1
n1 = length(msftRetS)
F.hat = 1:n1/n1 # empirical cdf
x1 = sort(z1) # sort from smallest to largest
y1 = pnorm(x1) # compute standard normal cdf at x
plot(x1,y1,main="Empirical CDF vs. Normal CDF for MSFT returns",
type="l",lwd=2,xlab="standardized MSFT returns",ylab="CDF")
points(x1,F.hat, type="s", lty=1, lwd=3, col="orange")
legend(x="topleft",legend=c("Normal CDF","Empirical CDF"),
lty=c(1,1), lwd=c(2,3), col=c("black","orange"))
# compare empirical cdf to standard normal cdf for SP500 returns
z1 = scale(coredata(sp500RetS)) # standardize to have mean zero and sd 1
n1 = length(sp500RetS)
F.hat = 1:n1/n1 # empirical cdf
x1 = sort(z1) # sort from smallest to largest
y1 = pnorm(x1) # compute standard normal cdf at x
plot(x1,y1,main="Empirical CDF vs. Normal CDF for SP500 returns",
type="l",lwd=2,xlab="standardized SP500 returns",ylab="CDF")
points(x1,F.hat, type="s", lty=1, lwd=3, col="orange")
legend(x="topleft",legend=c("Normal CDF","Empirical CDF"),
lty=c(1,1), lwd=c(2,3), col=c("black","orange"))
#
# sub-sub-section Empirical quantiles/percentiles
#
# use quantile() function
?quantile
args(quantile)
##
## Ex. Empirical quantiles of the Microsoft and S&P 500 monthly returns
##
##
## chunk
##
# empirical quantiles for MSFT
quantile(msftRetS)
quantile(sp500RetS)
##
## chunk
##
# 1% and 5% quantiles
quantile(msftRetS,probs=c(0.01,0.05))
quantile(sp500RetS,probs=c(0.01,0.05))
##
## chunk
##
# median and IQR
apply(msftSp500RetS, 2, median)
apply(msftSp500RetS, 2, IQR)
##
## End Example
##
# compare to normal quantiles
qnorm(p=c(0.01,0.05), mean=mean(msftRetS),
sd=sd(msftRetS))
# empirical and normal quantiles for SP500
quantile(sp500RetS,probs=c(0.01,0.05))
qnorm(p=c(0.01,0.05), mean=mean(sp500RetS),
sd=sd(sp500RetS))
#
# sub-sub-section Historical VaR
#
# monthly historical VaR - $100,000 investment
q.01 = quantile(msftRetS, probs=0.01)
q.05 = quantile(msftRetS, probs=0.05)
q.01
q.05
VaR.01 = 100000*q.01
VaR.05 = 100000*q.05
VaR.01
VaR.05
#
# Ex. Using empirical quantiles to compute historical Value-at-Risk
#
##
## chunk
##
W = 100000
msftQuantiles = quantile(msftRetS, probs=c(0.01, 0.05))
sp500Quantiles = quantile(sp500RetS, probs=c(0.01, 0.05))
msftVaR = W*msftQuantiles
sp500VaR = W*sp500Quantiles
msftVaR
sp500VaR
#
# sub-section: QQ-plots
#
#
# Ex. Normal QQ-plots for GWN, Microsoft and S&P 500 returns
#
##
## chunk
##
# Figure
win.metafile(filename=paste(savePath, "figDSqqplots.emf", sep=""))
par(mfrow=c(2,3)) # 4 panel layout: 2 rows and 2 columns
qqnorm(gwnMonthly, main="GWN Monthly", col="cornflowerblue")
qqline(gwnMonthly)
qqnorm(msftRetS, main="MSFT Monthly Returns", col="cornflowerblue")
qqline(msftRetS)
qqnorm(sp500RetS, main="SP500 Monthly Returns", col="cornflowerblue")
qqline(sp500RetS)
qqnorm(gwnDaily, main="GWN Daily", col="cornflowerblue")
qqline(gwnDaily)
qqnorm(msftDailyRetS, main="MSFT Daily Returns", col="cornflowerblue")
qqline(msftDailyRetS)
qqnorm(sp500DailyRetS, main="SP500 Daily Returns", col="cornflowerblue")
qqline(sp500DailyRetS)
par(mfrow=c(1,1))
dev.off()
##
## End example
##
# compare normal qq plots for simple and cc returns
par(mfrow=c(2,2))
qqnorm(msftRetS, main="MSFT Monthly Returns", col="cornflowerblue")
qqline(msftRetS)
qqnorm(msftRetC, main="MSFT Monthly CC Returns", col="cornflowerblue")
qqline(msftRetC)
qqnorm(sp500RetS, main="SP500 Monthly Returns", col="cornflowerblue")
qqline(sp500RetS)
qqnorm(sp500RetS, main="SP500 Monthly CC Returns", col="cornflowerblue")
qqline(sp500RetS)
par(mfrow=c(1,1))
# Data for student t with 3 df: tails fatter than normal
set.seed(123)
tdata = rt(200,df=3) # Student-t with 3 df
gdata = rnorm(200) # N(0,1) data
xx = seq(from=-5,to=5,length=100)
# data for log-normal: asymmetric distribution
lndata = rlnorm(200)
yy = seq(from=-3, to = 3, length=100)
# data for skew normal: asymmetric distribution
set.seed(223)
rightSkewData = rsn(200, alpha = 2)
leftSkewData = rsn(200, alpha = -2)
#
# homework problem, illustrate QQ plots for fat tailed and skewed distributions
#
par(mfrow=c(2,3))
# 1st plot
plot(xx,dnorm(xx),type="l", lwd=2,
main="Normal and Student-t with 3 df", xlab = "z, t", ylab = "pdf", col="cornflowerblue")
points(xx,dt(xx,df=3), type="l", col="orange", lwd=3)
legend(x="topright", legend=c("Normal","Student-t"), lty=c(1,1), col=c("cornflowerblue","orange"),
lwd=c(2,3))
# 2nd plot
plot(yy,dnorm(yy,sd=1),type="l", lwd=2, ylim=c(0,0.7),
main="Normal and Skew-Normal", xlab = "z, skew-z", ylab = "pdf",
col="cornflowerblue")
points(yy,dsn(yy, alpha=2), type="l", lwd=3, col="orange")
legend(x="topleft", legend=c("Normal","Skew-Normal"), lty=c(1,1), col=c("cornflowerblue","orange"),
lwd=c(2,3))
# 3rd plot
plot(yy,dnorm(yy,sd=1),type="l", lwd=2, ylim=c(0,0.7),
main="Normal and Skew-Normal", xlab = "z, skew-z", ylab = "pdf", col="cornflowerblue")
points(yy,dsn(yy, alpha=-2), type="l", lwd=3, col="orange")
legend(x="topright", legend=c("Normal","Skew-Normal"), lty=c(1,1), col=c("cornflowerblue","orange"),
lwd=c(2,3))
# 4th plot
qqnorm(tdata, col="cornflowerblue")
qqline(tdata)
# 5th plot
qqnorm(rightSkewData, col="cornflowerblue")
qqline(rightSkewData)
# 6th plot
qqnorm(leftSkewData, col="cornflowerblue")
qqline(leftSkewData)
par(mfrow=c(1,1))
#
# Ex. Student's t QQ-plot for Microsoft returns
#
# create QQ-plot with Student's t distribution with 5 df for MSFT returns
##
## chunk
##
library(car)
win.metafile(filename=paste(savePath, "figDSqqplotStudent.emf", sep=""))
qqPlot(coredata(msftRetS), distribution="t", df=5,
ylab="MSFT quantiles", envelope=FALSE)
dev.off()
##
## End example
##
#
# Sub-section Shape Characteristics of the Empirical Distribution
#
# use mean, var, sd, skewness and kurtosis functions
mean(msftRetS)
var(msftRetS)
sd(msftRetS)
skewness(msftRetS)
kurtosis(msftRetS)
# kurtosis function actually computes excess kurtosis
kurtosis(msftRetC) + 3
# note: summary is a generic function with several methods
summary(msftRetS)
# Use apply to compute statistics for columns
mean.vals = apply(msftSp500RetS, 2, mean)
var.vals = apply(msftSp500RetS, 2, var)
sd.vals = apply(msftSp500RetS, 2, sd)
skew.vals = apply(msftSp500RetS, 2, skewness)
kurt.vals = apply(msftSp500RetS, 2, kurtosis)
stats.mat = rbind(mean.vals,var.vals, sd.vals,
skew.vals, kurt.vals)
#
# Ex. Sample shape statistics for the returns on Microsoft and S&P 500
#
# Monthly stats
##
## chunk
##
statsMat = rbind(apply(msftSp500RetS, 2, mean),
apply(msftSp500RetS, 2, var),
apply(msftSp500RetS, 2, sd),
apply(msftSp500RetS, 2, skewness),
apply(msftSp500RetS, 2, kurtosis))
rownames(statsMat) = c("Mean", "Variance", "Std Dev",
"Skewness", "Excess Kurtosis")
round(statsMat, digits=4)
# Daily stats
##
## chunk
##
statsMatDaily = rbind(apply(msftSp500DailyRetS, 2, mean),
apply(msftSp500DailyRetS, 2, var),
apply(msftSp500DailyRetS, 2, sd),
apply(msftSp500DailyRetS, 2, skewness),
apply(msftSp500DailyRetS, 2, kurtosis))
rownames(statsMatDaily) = rownames(statsMat)
round(statsMatDaily, digits=4)
# check square root of time rule
##
## chunk
##
12*statsMatDaily["Mean", ]
sqrt(12)*statsMatDaily["Std Dev", ]
##
## End example
##
#
# Sub-section outliers
#
# create GWN return data polluted by outlier
gwnMonthlyOutlier = gwnMonthly
gwnMonthlyOutlier[20] = -sd(gwnMonthly)*6
# Figure
win.metafile(filename=paste(savePath, "figDSgwnOutlier.emf", sep=""))
par(mfrow=c(2,1))
plot(gwnMonthlyOutlier,main="", lwd=2, col="blue", ylab="")
abline(h=0)
hist(gwnMonthlyOutlier, main="", col="cornflowerblue",
xlab="GWN with outlier")
par(mfrow=c(1,1))
dev.off()
# compare summary statistic for MSFT returns and returns polluted by outlier
gwnMonthlyBoth = cbind(gwnMonthly, gwnMonthlyOutlier)
statsMat = rbind(apply(gwnMonthlyBoth, 2, mean),
apply(gwnMonthlyBoth, 2, var),
apply(gwnMonthlyBoth, 2, sd),
apply(gwnMonthlyBoth, 2, skewness),
apply(gwnMonthlyBoth, 2, kurtosis),
apply(gwnMonthlyBoth, 2, median),
apply(gwnMonthlyBoth, 2, IQR))
rownames(statsMat) = c("Mean", "Var", "SD", "skewness", "kurtosis",
"median", "IQR")
statsMat["kurtosis", ] = statsMat["kurtosis", ] + 3
pctchange = (statsMat[, 2] - statsMat[, 1])/statsMat[, 1]
statsMat = cbind(statsMat, pctchange)
round(statsMat, digits=4)
#
# 12. boxplots
#
# use boxplot() function
# note: boxplot() works on xts objects but not zoo objects!!!!
?boxplot
args(boxplot)
boxplot(msftRetS,outchar=T,main="Boxplot of monthly cc returns on Microsoft",
ylab="monthly cc return", col="cornflowerblue")
boxplot(sp500RetC,outchar=T,main="Boxplot of monthly cc returns on SP500",
ylab="monthly cc return")
boxplot(coredata(gwnMonthly), coredata(msftRetS), coredata(sp500RetS),
names=c("gwn","MSFT","SP500"),
outchar=T, col="cornflowerblue",
main="Comparison of return distributions",
ylab="monthly returns")
##
## EX. Boxplots of return distributions
##
##
## chunk
##
win.metafile(filename=paste(savePath, "figDSboxplotReturns.emf", sep=""))
boxplot(coredata(msftRetS), coredata(msftRetC),
coredata(sp500RetS), coredata(sp500RetC),
names=c("msftRetS", "msftRetC",
"sp500RetS", "sp500RetC"),
col="cornflowerblue")
dev.off()
dataToPlot = merge(msftRetS,msftRetC,sp500RetS,sp500RetC)
colnames(dataToPlot) = c("msftRetS", "msftRetC",
"sp500RetS", "sp500RetC")
chart.Boxplot(dataToPlot)
#
# 13. graphically summarize data (see Carmona book)
#
par(mfrow=c(2,2))
hist(msftRetS,main="MSFT monthly cc returns",
probability=T, ylab="cc return", col="cornflowerblue")
boxplot(msftRetS,outchar=T, ylab="cc return", col="cornflowerblue")
plot(MSFT.density,type="l",xlab="cc return", col="cornflowerblue", lwd=2,
ylab="density estimate", main="Smoothed density")
qqnorm(msftRetS)
qqline(msftRetS)
par(mfrow=c(1,1))
# example of four panel plot
fourPanelPlot = function(ret) {
# ret n.dates x 1 matrix of returns. It is assumed that the
# column has a name
retName = colnames(ret)
ret.den = density(ret)
par(mfrow=c(2,2))
hist(ret, main=paste(retName, " monthly returns", sep=""),
xlab=retName, probability=T, col="cornflowerblue")
boxplot(ret, outchar=T,col="cornflowerblue")
plot(ret.den, main="smoothed density",
type="l", lwd=2,
xlab="monthly return",
ylab="density estimate")
# overlay normal distribution on smoothed density
lines(ret.den$x, dnorm(ret.den$x, mean=mean(ret), sd=sd(ret)),
col="cornflowerblue", lwd=2)
legend(x="topleft", legend=c("smoothed", "normal"),
lty=c(1,1), col=c("black", "blue"), lwd=2)
qqnorm(ret, col="cornflowerblue", pch=16)
qqline(ret)
par(mfrow=c(1,1))
}
fourPanelPlot(coredata(msftRetC))
#
# 15. Time series descriptive statistics
#
# sample autocovariances and autocorrelations
?acf
args(acf)
# autocorrelations for simulated gaussian data and SP500
# be careful with zoo objects!!!!
# compute autocorrelations
acf(coredata(msftRetS), lag.max=5, plot=FALSE)
acf(coredata(msftDailyRetS), lag.max=5, plot=FALSE)
win.metafile(filename=paste(savePath, "figDSsacf.emf", sep=""))
par(mfrow=c(2,2))
acf(coredata(msftRetS), main="msftRetS", lwd=2)
acf(coredata(sp500RetS), main="sp500RetS", lwd=2)
acf(coredata(msftDailyRetS), main="msftDailyRetS", lwd=2)
acf(coredata(sp500DailyRetS), main="sp500DailyRetS", lwd=2)
par(mfrow=c(1,1))
dev.off()
#
# nonlinear time dependence
#
n.obs = 500
set.seed(123)
gwn = rnorm(n.obs)
win.metafile(filename=paste(savePath, "figDSgwnIndep.emf", sep=""))
par(mfrow=c(3, 2))
ts.plot(gwn)