-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathtwopart.m
83 lines (72 loc) · 2.33 KB
/
twopart.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
%generate data from the two part model,
%and fit the model using the Gibbs sampler
clear;
clc;
randn('seed',sum(100*clock));
%generate the data
nobs = 1000;
beta1_true = .5;
beta2_true = 1;
sigeps_true = 4;
eps1 = randn(nobs,1);
eps2 = randn(nobs,1);
Dstar_true = beta1_true + eps1;
D = .5 + .5*sign(Dstar_true);
y =zeros(nobs,1);
for i = 1:nobs;
if D(i,1)==1
logy = beta2_true + sqrt(sigeps_true)*eps2(i,1);
y(i,1) = exp(logy);
elseif D(i,1)==0;
y(i,1) = 0;
end;
end;
const = ones(nobs,1);
%prior values
mu_beta1 = 0;
mu_beta2 = 0;
V_beta1 = 10;
V_beta2 = 10;
a = 3;
b = 1;
%find the positive y observations, and assemble those data
points = find(D==1);
yplus = log(y(points));
nplus = length(yplus);
const_plus = ones(nplus,1);
%Note: if there are covariates, you would need to
%get the positive part for the x data as well
iter = 3000;
burn = 1000;
beta1_final = zeros(iter-burn,1);
beta2_final = beta1_final;
sigeps_final = beta1_final;
beta1 = 0;
beta2 = 0;
sigeps = 1;
for j = 1:iter;
%draw from latent data dstar
mu_vec = beta1*const;
Dstar = truncnorm(mu_vec,const,D);
%draw from beta1 conditional
D_beta1 = inv(const'*const + inv(V_beta1));
d_beta1 = const'*Dstar + inv(V_beta1)*mu_beta1;
H_beta1 = chol(D_beta1);
beta1 = D_beta1*d_beta1 + H_beta1'*randn(1,1);
%draw from beta2 conditional
D_beta2 = inv(const_plus'*const_plus/sigeps + inv(V_beta2));
d_beta2 = const_plus'*yplus/sigeps + inv(V_beta2)*mu_beta2;
H_beta2 = chol(D_beta2);
beta2 = D_beta2*d_beta2 + H_beta2'*randn(1,1);
%draw from sigeps conditional
sigeps = invgamrnd( (nplus/2) + a, inv(inv(b) + .5*(yplus - beta2)'*(yplus - beta2)),1,1);
if j > burn;
beta1_final(j-burn,1) = beta1;
beta2_final(j-burn,1) = beta2;
sigeps_final(j-burn,1) = sigeps;
end;
end;
disp('Posterior means: beta1, beta2, sigeps');
[mean(beta1_final) mean(beta2_final) mean(sigeps_final)]
disp('True parameter values');
[beta1_true beta2_true sigeps_true]