-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluation.py
930 lines (707 loc) · 34 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
#!/usr/bin/env python
# coding: utf-8
# # Evaluation of extrapolation performances of materials properties prediction
import os
import math
import pandas as pd
import numpy as np
import sys
import csv
import subprocess
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import logging
logging.getLogger("tensorflow").setLevel(logging.WARNING)
import argparse
import warnings
with warnings.catch_warnings():
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
from sklearn import metrics
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.kernel_ridge import KernelRidge
from sklearn.model_selection import cross_val_score, cross_val_predict, GridSearchCV, ShuffleSplit, KFold, train_test_split
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
from sklearn.base import BaseEstimator, clone
from sklearn.neighbors import KNeighborsRegressor
from matminer.data_retrieval.retrieve_MP import MPDataRetrieval
from matminer.featurizers.conversions import StrToComposition
from matminer.featurizers.base import MultipleFeaturizer
from matminer.featurizers import composition as cf
from pymatgen.core.periodic_table import Element
from pymatgen.core.structure import Structure
from pymatgen.core.composition import Composition
from pymatgen.io.ase import AseAtomsAdaptor
from ase.io import read
parser = argparse.ArgumentParser(description='kmFCV')
parser.add_argument('--data-path', default='data',
help='dataset options, started with the path to root dir, '
'then other options')
parser.add_argument('--demo', action='store_true',
help='Quick demo mode, 1000 samples')
parser.add_argument('--hybrid', action='store_true',
help='hybrid traning mode')
parser.add_argument('--dataset', choices=['mp', 'supercon'],
default='mp', help='dataset name (default: mp)')
parser.add_argument('--property', choices=['formation_energy', 'band_gap', 'Tc'],
default='formation_energy', help='property name (default: formation_energy)')
parser.add_argument('--feature', choices=['magpie', 'composition', 'ptr'],
default='magpie', help='feature name (default: magpie)')
parser.add_argument('--model', choices=['1nn', 'rf', 'mlp', 'cnn', 'cgcnn', 'elemnet', 'svr'],
default='rf', help='model name (default: rf)')
parser.add_argument('--epochs', default=30, type=int, metavar='N',
help='epochs to train (default: 30)')
parser.add_argument('--validation', choices=['cv', 'fcv', 'holdout', 'iecv'],
default='cv', help='validation method (default: cv)')
parser.add_argument('--split', choices=['random', 'sorted'],
default='random', help='split (default: random)')
parser.add_argument('-k', default=5, type=int, metavar='N',
help='k value (default: 5)')
parser.add_argument('-m', default=1, type=int, metavar='N',
help='m value (default: 1)')
args = parser.parse_args(sys.argv[1:])
data_folder = args.data_path
dataset = args.dataset
pred_property = args.property
feature = args.feature
ml_method = args.model
epochs = args.epochs
quick_demo = args.demo
hybrid = args.hybrid
validation_type = args.validation
split = args.split
k = args.k
m = args.m
if validation_type == 'cv':
validation_method = '{}_fold_{}'.format(k, validation_type)
else:
validation_method = '{}_fold_{}_step_{}'.format(k, m, validation_type)
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D, CuDNNLSTM, Input, BatchNormalization, Activation
from keras.wrappers.scikit_learn import KerasRegressor
from keras.optimizers import SGD
from keras import backend as K
from keras import regularizers
def main():
validation_types = {
'cv': cv,
'fcv': fcv,
'holdout': holdout,
'iecv': iecv
}
print('-----------------------------------------------------------------------------------------------')
print('{} dataset, {} property, {} feature, {} method, {} validation'.format(dataset, pred_property, feature, ml_method, validation_method))
if quick_demo:
print('Demo mode.')
# print('k = {}'.format(k))
# if args.validation == 'fcv':
# print('m = {}'.format(m))
print('-----------------------------------------------------------------------------------------------')
if ml_method == 'cgcnn':
subprocess.run(['python', 'cgcnn_main.py', '--demo', str(1) if quick_demo else str(0), '--hybrid', str(1) if hybrid else str(0),
'{}/cgcnn_{}'.format(data_folder, pred_property), '--validation', validation_type, '-k', str(k), '--epochs', str(epochs)])
else:
y = None
try:
y = np.load('{}/features/{}_{}_y.npy'.format(data_folder, dataset, pred_property))
except:
pass
if y is not None:
try:
X = pd.read_csv('{}/features/{}_{}_{}_X.csv'.format(data_folder, dataset, pred_property, feature))
except:
X = np.load('{}/features/{}_{}_{}_X.npy'.format(data_folder, dataset, pred_property, feature))
if quick_demo:
if isinstance(X, pd.DataFrame):
X = X.head(1000)
else:
X = X[:1000]
y = y[:1000]
# set the memory usage
from keras.backend.tensorflow_backend import set_session
import tensorflow as tf
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
set_session(tf.Session(config=tf_config))
tf.logging.set_verbosity(tf.logging.ERROR)
if ml_method == '1nn':
validation_types[validation_type](KNeighborsRegressor(1, n_jobs=-1), X, y, k=k)
if ml_method == 'rf':
validation_types[validation_type](RandomForestRegressor(100, max_features=10, n_jobs=-1), X, y)
if ml_method == 'svr':
validation_types[validation_type](GridSearchCV(SVR(gamma='scale'),
param_grid=dict(C=[0.1], epsilon =[0.01, 0.1]),
scoring='neg_mean_absolute_error', verbose=2, cv=ShuffleSplit(5), n_jobs=-1),
X, y)
if ml_method == 'mlp':
validation_types[validation_type](mlp, X, y, shape=X.shape[1])
if ml_method == 'elemnet':
validation_types[validation_type](elemnet, X, y, shape=X.shape[1])
if ml_method == 'cnn':
validation_types[validation_type](cnn, X, y, shape=(X.shape[1], X.shape[2], X.shape[3]))
if ml_method == 'lstm':
validation_types[validation_type](lstm, X, y, shape=(X.shape[0], X.shape[1]))
# ## 1. Get data (Material Project, icsd subset of oqmd, Superconductivity)
# ### Material Project
# In[4]:
def get_mp(properties=[]):
mp_df = pd.read_csv("{}/mp_raw.csv".format(data_folder), nrows=1000 if quick_demo else None)
# # Read formula string as a dictionary
# mp_df['formula_dict'] = mp_df['formula'].transform(lambda x: Composition(x).as_dict())
formula_dict_list = []
for i in range(mp_df['formula'].count()):
try:
formula_dict_list.append(Composition(mp_df['formula'][i]).as_dict())
except:
formula_dict_list.append(np.nan)
mp_df['formula_dict'] = pd.Series(formula_dict_list)
mp_df = mp_df.dropna(subset=['formula_dict'])
existing_properties = mp_df.columns.values.tolist()
new_properties = list(set(properties) - set(existing_properties))
if len(new_properties) > 0:
mp_new_properties = download_mp(new_properties)
if len(mp_df) == len(mp_new_properties):
mp_df = pd.concat([mp_df, mp_new_properties], axis=1, join='outer')
else:
raise Exception('Mismatch row number')
mp_df.to_csv("mp_raw.csv", index=False)
if len(properties) > 0:
return mp_df[properties]
else:
return mp_df
def download_mp(properties):
# Material Project key
mpdr = MPDataRetrieval(api_key='8TmS5ERNxWtrzo2K')
energy_min = -5
energy_max = 5
energy_step = 0.02
mp_df = pd.DataFrame()
energy = energy_min
while energy <= energy_max:
mp_df_subquery = mpdr.get_dataframe(
criteria={"formation_energy_per_atom": {"$gt": energy, "$lte": energy + energy_step}},
properties=list(set(properties) + set(['formation_energy_per_atom']))
)
mp_df = pd.concat([mp_df, mp_df_subquery])
print("There are {} entries for range {} {}, total {}".format(mp_df_subquery['formation_energy_per_atom'].count(),
energy,
energy+0.1,
mp_df['formation_energy_per_atom'].count()))
energy = energy + energy_step
mp_df.reset_index(drop=True, inplace=True)
return mp_df[properties]
# ### ICSD/OQMD
# In[5]:
def get_icsd(path = '{}/voro-ml-si/datasets/icsd-all'.format(data_folder)):
oqmd_df = pd.read_csv('{}/properties.txt'.format(path), sep=' ', nrows=1000 if quick_demo else None)
oqmd_df['formula'] = oqmd_df['filename'].transform(lambda x: x.split('-')[1])
oqmd_df['structure'] = oqmd_df['filename'].transform(
lambda x: AseAtomsAdaptor().get_structure(read(os.path.join(path, x), format='vasp')))
oqmd_df['formula_dict'] = oqmd_df['formula'].transform(lambda x: Composition(x).as_dict())
oqmd_df['nelements'] = oqmd_df['formula'].transform(lambda x: len(Composition(x).as_dict().keys()))
oqmd_df=oqmd_df.rename(columns = {'delta_e':'formation_energy'})
oqmd_df=oqmd_df.rename(columns = {'bandgap':'band_gap'})
return oqmd_df
# ### Superconductivity
# In[6]:
def get_supercon():
supercon_df = pd.read_csv('{}/Supercon_data.csv'.format(data_folder), nrows=1000 if quick_demo else None)
supercon_df.columns = ['formula', 'Tc']
supercon_df['formula_dict'] = supercon_df['formula'].transform(lambda x: Composition(x).as_dict())
supercon_df['nelements'] = supercon_df['formula'].transform(lambda x: len(Composition(x).as_dict().keys()))
return supercon_df
# ### AFLOW
# In[7]:
def get_aflow(path = '{}/aflow'.format(data_folder)):
pass
def download_aflow():
from aflow import search
import urllib.request
aflow_data = search(batch_size=100).select(K.Egap).filter(K.Egap > 0).orderby(K.Egap, reverse=True)
count = 0
aflow_band_gap = np.zeros(len(result))
aflow_compound = []
for entry in aflow_data:
sys.stdout.write("Downloading: %d out of %d \r" % (count, len(aflow_data)))
sys.stdout.flush()
try:
url = str(entry) + '/' + str(entry).split("/")[-1] + '.cif'
file_path = '{}/{}_{}_{}.cif'.format(path, count, str(entry).split("/")[-2], str(entry).split("/")[-1])
urllib.request.urlretrieve(url, file_path)
except:
pass
aflow_band_gap[count] = entry.Egap
aflow_compound.append(entry.compound)
count += 1
aflow_df = pd.DataFrame({'full_formula':aflow_compound[0:33762],'band_gap':aflow_band_gap[0:33762]})
aflow_df.head()
aflow_df.to_csv('aflow/aflow.csv')
# ## 2. Data preprocessing
# Selected elements using perioic table representation
# In[8]:
ptr_dict = {'Li': (0,0), 'Be': (0,1), 'B': (0,12), 'C': (0,13), 'N': (0,14), 'O': (0,15), 'Na': (1,0),
'Mg': (1,1), 'Al': (1,12), 'Si': (1,13), 'P': (1,14), 'S':(1,15), 'K':(2,0), 'Ca':(2,1), 'Sc':(2,2),
'Ti':(2,3), 'V':(2,4), 'Cr':(2,5), 'Mn':(2,6), 'Fe':(2,7), 'Co':(2,8), 'Ni':(2,9), 'Cu':(2,10), 'Zn':(2,11),
'Ga':(2,12), 'Ge':(2,13), 'As':(2,14), 'Se':(2,15), 'Rb':(3,0), 'Sr':(3,1), 'Y':(3,2), 'Zr':(3,3),
'Nb':(3,4), 'Mo':(3,5), 'Tc':(3,6), 'Ru':(3,7), 'Rh':(3,8), 'Pd':(3,9), 'Ag':(3,10), 'Cd':(3,11),
'In':(3,12), 'Sn':(3,13), 'Sb':(3,14), 'Te':(3,15), 'Cs':(4,0), 'Ba':(4,1), 'Hf':(4,3), 'Ta':(4,4),
'W':(4,5), 'Re':(4,6), 'Os':(4,7), 'Ir':(4,8), 'Pt':(4,9), 'Au':(4,10), 'Hg':(4,11), 'Ti':(4,12),
'Pb':(4,13), 'Bi':(4,14), 'Po':(4,15)}
# In[9]:
ptr_atom_type = ptr_dict.keys()
ptr_atom_type
# Preprocessing
# In[10]:
def data_preprocessing(input_data,
properties_to_predict,
valid_range=None,
allowed_element=ptr_atom_type,
formula_column='formula',
remove_duplicate=True, remove_outliers=True,
remove_ill_converged=True, remove_one_element_compound=True,
inplace=False):
if not inplace:
data = input_data.copy()
else:
data = input_data
# Get only the groundstate and each composition
if remove_duplicate:
original_count = len(data)
data.sort_values('formation_energy', ascending=True, inplace=True)
data.drop_duplicates(formula_column, keep='first', inplace=True)
print('Remove duplicate composition: removed %d/%d entries'%(original_count - len(data), original_count))
# Sort by predicted property
data.sort_values(properties_to_predict, ascending=True, inplace=True)
# Filter
if properties_to_predict == 'band_gap':
original_count = len(data)
data = data[data[properties_to_predict] > 0]
print('Remove 0 band gap samples: removed %d/%d entries'%(original_count - len(data), original_count))
if properties_to_predict == 'Tc':
original_count = len(data)
data = data[data[properties_to_predict] >= 10]
print('Remove < 10 Tc samples: removed %d/%d entries'%(original_count - len(data), original_count))
# Remove outliers
if remove_outliers:
original_count = len(data)
data = data[np.abs(data[properties_to_predict]-data[properties_to_predict].mean()) <= (5*data[properties_to_predict].std())]
# data = data[np.logical_and(data[properties_to_predict] >= -20, data['formation_energy_per_atom'] <= 5)]
print('Remove outliers: removed %d/%d entries'%(original_count - len(data), original_count))
# Remove ill converged samples
if remove_ill_converged:
try:
original_count = len(data)
data = data[data.has_bandstructure == True]
data = data[data['elasticity.warnings'].isnull()]
print('Remove ill converged samples: removed %d/%d entries'%(original_count - len(data), original_count))
except:
pass
# Remove one element compound
if remove_one_element_compound:
if 'nelements' not in data.columns:
data['nelements'] = data[formula_column].transform(lambda x: len(Composition(x).as_dict()))
original_count = len(data)
data = data[data.nelements > 1]
print('Remove one element sample: removed %d/%d entries'%(original_count - len(data), original_count))
data.reset_index(drop=True, inplace=True)
if allowed_element is not None:
if 'formula_dict' not in data.columns:
data['formula_dict'] = data[formula_column].transform(lambda x: Composition(x).as_dict())
original_count = len(data)
valid_compound = []
for i in range(data['formula_dict'].count()):
if_valid = True
for element in data['formula_dict'][i].keys():
if element not in allowed_element:
if_valid = False
break
valid_compound.append(if_valid)
data['if_valid'] = pd.Series(valid_compound)
data = data[data.if_valid == True]
data = data.drop(columns=['if_valid'])
print('Remove by element filter: removed %d/%d entries'%(original_count - len(data), original_count))
data.reset_index(drop=True, inplace=True)
print('Final sample count: {}'.format(data.shape[0]))
if inplace:
return None
else:
return data
# Prepare data for CGCNN. Save the structure as cif file, save the properties as a csv file
# In[11]:
def mp_to_cgcnn(data, property_name, cgcnn_location, folder_name):
if not os.path.exists('{}/cgcnn/data/{}'.format(cgcnn_location, folder_name)):
os.mkdir('{}/cgcnn/data/{}'.format(cgcnn_location, folder_name))
# Generate cif for cgcnn
for i in range(len(data)):
Structure.to(Structure.from_str(data['cif'][i], 'cif'), fmt='cif',
filename='{}/cgcnn/data/{}/{}.cif'.format(cgcnn_location, folder_name, i))
# Generate csv for cgcnn
data[property_name].to_csv('{}/cgcnn/data/{}/id_prop.csv'.format(cgcnn_location, folder_name), header=False)
# Copy atom properties
os.system('cp {}/cgcnn/data/sample-regression/atom_init.json ./cgcnn/data/{}/atom_init.json'.format(cgcnn_location, folder_name))
# In[ ]:
def oqmd_to_cgcnn():
pass
# ## 3. Feature calculation mothod
# ### Magpie feature
# we use the "general-purpose" attributes of [Ward et al 2016](https://www.nature.com/articles/npjcompumats201628).
# In[ ]:
def get_magpie_feature(input_data, formula_column, inplace=False):
if inplace:
data = input_data
else:
data = input_data[[formula_column]].copy()
feature_calculators = MultipleFeaturizer([cf.Stoichiometry(), cf.ElementProperty.from_preset("magpie"),
cf.ValenceOrbital(props=['avg']), cf.IonProperty(fast=True)])
# Get the feature names
feature_labels = feature_calculators.feature_labels()
# Compute the features
data = StrToComposition(target_col_id='composition').featurize_dataframe(data, formula_column,
ignore_errors=True)
data = feature_calculators.featurize_dataframe(data, col_id='composition')
print('Generated %d features'%len(feature_labels))
print('Dataset size:', 'x'.join([str(x) for x in data[feature_labels].shape]))
# Remove entries with NaN or infinite features
original_count = len(data)
data = data[~ data[feature_labels].isnull().any(axis=1)]
print('Removed %d/%d entries'%(original_count - len(data), original_count))
if inplace:
return None
else:
return data[feature_labels]
# ### Composition feature
# In[ ]:
def get_composition_feature(input_data, formula_column, inplace=False):
if inplace:
data = input_data
else:
data = input_data[[formula_column]].copy()
# Get all atom types
atom_types = set()
for formula in data[formula_column].values:
for atom in Composition(formula).as_dict().keys():
atom_types.add(atom)
atom_types = list(atom_types)
print("{} atom types: {}".format(len(atom_types), atom_types))
# Encode by the fraction of elements
for atom in atom_types:
progress = atom_types.index(atom) / len(atom_types) * 100
sys.stdout.write("Processing progress: %f%% %s \r" % (progress, atom))
sys.stdout.flush()
data[atom] = data[formula_column].transform(lambda x: Composition(x).get_atomic_fraction(atom))
if inplace:
return data
else:
return data[list(atom_types)]
# ### PTR feature
# In[ ]:
def get_ptr_feature(data, formula_column):
# Raw periodic table matrix
ptr_matrix_raw = np.full((5, 16), -1.0)
ptr_matrix_raw[0:2, 2:12] = 0
ptr_matrix_raw[4,2] = 0
ptr_matrix_raw
ptr_matrix_list = []
for formula in data[formula_column].values:
ptr_matrix = np.copy(ptr_matrix_raw)
for atom in Composition(formula).as_dict().keys():
ptr_matrix[ptr_dict[atom][0]][ptr_dict[atom][1]] = Composition(formula).as_dict()[atom]
ptr_matrix_list.append(ptr_matrix)
ptr_matrix_list = np.array(ptr_matrix_list)
ptr_matrix_list = ptr_matrix_list.reshape(ptr_matrix_list.shape[0],
1,
ptr_matrix_list.shape[1],
ptr_matrix_list.shape[2])
return ptr_matrix_list
# ## 4. Model
# ### MLP
# In[ ]:
def mlp(input_dim):
model = Sequential()
model.add(Dense(1024, input_dim=input_dim, kernel_initializer='normal', activation='relu'))
model.add(Dense(1024, kernel_initializer='normal', activation='relu'))
Dropout(0.5, noise_shape=None, seed=None)
model.add(Dense(512, kernel_initializer='normal', activation='relu'))
model.add(Dense(512, kernel_initializer='normal', activation='relu'))
Dropout(0.5, noise_shape=None, seed=None)
model.add(Dense(128, kernel_initializer='normal', activation='relu'))
model.add(Dense(128, kernel_initializer='normal', activation='relu'))
Dropout(0.5, noise_shape=None, seed=None)
model.add(Dense(1, kernel_initializer='normal'))
# model.add(Dense(1, kernel_initializer='normal', activity_regularizer=regularizers.l1(0.0005)))
model.compile(loss='mean_squared_error', metrics=['mean_absolute_error'], optimizer='Adam')
return model
def elemnet(input_dim, l1_reg=False):
model = Sequential()
model.add(Dense(1024, input_dim=input_dim, kernel_initializer='normal', activation='relu'))
model.add(Dense(1024, kernel_initializer='normal', activation='relu'))
model.add(Dense(1024, kernel_initializer='normal', activation='relu'))
model.add(Dense(1024, kernel_initializer='normal', activation='relu'))
Dropout(0.8, noise_shape=None, seed=None)
model.add(Dense(512, kernel_initializer='normal', activation='relu'))
model.add(Dense(512, kernel_initializer='normal', activation='relu'))
model.add(Dense(512, kernel_initializer='normal', activation='relu'))
Dropout(0.9, noise_shape=None, seed=None)
model.add(Dense(256, kernel_initializer='normal', activation='relu'))
model.add(Dense(256, kernel_initializer='normal', activation='relu'))
model.add(Dense(256, kernel_initializer='normal', activation='relu'))
Dropout(0.7, noise_shape=None, seed=None)
model.add(Dense(128, kernel_initializer='normal', activation='relu'))
model.add(Dense(128, kernel_initializer='normal', activation='relu'))
model.add(Dense(128, kernel_initializer='normal', activation='relu'))
Dropout(0.8, noise_shape=None, seed=None)
model.add(Dense(64, kernel_initializer='normal', activation='relu'))
model.add(Dense(64, kernel_initializer='normal', activation='relu'))
model.add(Dense(32, kernel_initializer='normal', activation='relu'))
# model.add(Dense(32, kernel_initializer='normal', use_bias=False))
# model.add(BatchNormalization())
# model.add(Activation("relu"))
if not l1_reg:
model.add(Dense(1, kernel_initializer='normal'))
else:
model.add(Dense(1, kernel_initializer='normal', activity_regularizer=regularizers.l1(0.001)))
model.compile(loss='mean_squared_error', metrics=['mean_absolute_error'], optimizer='Adam')
return model
def lstm(input_shape):
rnn_unit_size = 256
dense_unit_size_1 = 128
dense_unit_size_2 = 90
model = Sequential()
input_sequences = Input(shape=input_shape)
model.add(CuDNNLSTM(rnn_unit_size, return_sequences=False)(input_sequences))
# x = GlobalAveragePooling1D()(processed_sequences)
model.add(Dense(dense_unit_size_1, activation='relu'))
model.add(Dense(dense_unit_size_2, activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
model.compile(optimizer="adam", loss='mean_absolute_error', metrics=['mean_absolute_error'])
# ### CNN
# In[ ]:
def cnn(input_shape):
model = Sequential()
model.add(Conv2D(96, kernel_size=(3, 3), activation='relu', padding='same',
input_shape=input_shape, data_format='channels_first'))
model.add(Conv2D(96, (5, 5), activation='relu', padding='same'))
model.add(Dropout(0.25))
model.add(Conv2D(96, (3, 3), activation='relu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(192, activation='relu'))
model.add(Dense(192, activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
sgd = SGD(lr=0.01, momentum=0.9, decay=0.0, nesterov=True)
model.compile(loss="mean_absolute_error", optimizer=sgd)
return model
# ### Random Forest
# In[ ]:
def rf():
print("Grid search...")
model = GridSearchCV(RandomForestRegressor(n_estimators=20 if quick_demo else 150, n_jobs=-1),
param_grid=dict(max_features=range(8,15)),
scoring='neg_mean_absolute_error',
cv=ShuffleSplit(1, 0.1))
return model
# ### Plot the individual predictions
# In[ ]:
def evaluation_plot(y, cv_prediction, max_value=None):
y = np.array(y).ravel()
cv_prediction = np.array(cv_prediction).ravel()
result_row = [dataset, pred_property, feature, ml_method, validation_method]
cv_prediction = np.nan_to_num(cv_prediction)
for scorer in ['mean_absolute_error', 'mean_squared_error', 'r2_score']:
score = getattr(metrics,scorer)(y, cv_prediction)
if scorer != 'mean_squared_error':
result_row.append(score)
else:
result_row.append(math.sqrt(score))
print(scorer, score)
if max_value:
positive_number = 0
for i in range(len(cv_prediction)):
if cv_prediction[i] > max_value[i]:
positive_number += 1
result_row.append(positive_number / len(cv_prediction))
with open('{}/results/results.csv'.format(data_folder),'a', newline='') as f:
wr = csv.writer(f, dialect='excel')
wr.writerow(result_row)
file_name = '{}/results/{}_{}_{}_{}_{}'.format(data_folder, dataset, pred_property, feature,
ml_method, validation_method)
if max_value:
data_to_save = {'DFT': list(y), 'ML': list(cv_prediction), 'train_max': max_value}
else:
data_to_save = {'DFT': list(y), 'ML': list(cv_prediction)}
pd.DataFrame.from_dict(data_to_save).to_csv(file_name + '.csv', index=False)
pd.DataFrame.from_dict(data_to_save).to_pickle(file_name + '.pkl')
fig, ax = plt.subplots()
ax.hist2d(pd.to_numeric(y), cv_prediction, norm=LogNorm(),
bins=128, cmap='Blues', alpha=0.9)
ax.set_xlim(ax.get_ylim())
ax.set_ylim(ax.get_xlim())
mae = metrics.mean_absolute_error(y, cv_prediction)
r2 = metrics.r2_score(y, cv_prediction)
rmse = math.sqrt(metrics.mean_squared_error(y, cv_prediction))
ax.set_title('{}, {}, {}, {}, {}'.format(dataset, pred_property, feature, ml_method, validation_method))
ax.text(0.5, 0.1, 'MAE: {:.4f} eV/atom\nRMSE: {:.4f} eV/atom\n$R^2$: {:.4f}'.format(mae, rmse, r2),
transform=ax.transAxes,
bbox={'facecolor': 'w', 'edgecolor': 'k'})
ax.plot(ax.get_xlim(), ax.get_xlim(), 'k--')
ax.set_xlabel('DFT $\Delta H_f$ (eV/atom)')
ax.set_ylabel('ML $\Delta H_f$ (eV/atom)')
fig.set_size_inches(5, 5)
fig.tight_layout()
fig.savefig(file_name + '.png', dpi=640)
return mae, rmse, r2
# ### K-fold Cross Validation
# In[ ]:
def holdout(original_model, X, y, shape=None):
if isinstance(X, pd.DataFrame):
X = X.values
if split == 'random':
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
else:
split_ratio = 0.8
split_number = int(split_ratio * len(X))
X_train = X[:split_number]
X_test = X[split_number:split_number+100]
y_train = y[:split_number]
y_test = y[split_number:split_number+100]
if issubclass(type(original_model), BaseEstimator):
model = clone(original_model)
model.fit(X_train, y_train)
else:
model = original_model(shape, l1_reg=False)
model.fit(X_train, y_train, epochs=20, batch_size=128, verbose=1, validation_data=(X_test, y_test))
model.save_weights('my_model_weights.h5')
model = original_model(shape, l1_reg=True)
model.load_weights('my_model_weights.h5')
model.fit(X_train, y_train, epochs=50, batch_size=128, verbose=1, validation_data=(X_test, y_test))
evaluation_plot(y_test, model.predict(X_test))
def hybrid_train(original_model, X_train, y_train, shape):
reg_sched = 0.2
start_epoch = math.floor(epochs * reg_sched)
model = original_model(shape, l1_reg=False)
model.fit(X_train, y_train, epochs=start_epoch, batch_size=128, verbose=0)
model.save_weights('my_model_weights.h5')
model = original_model(shape, l1_reg=True)
model.load_weights('my_model_weights.h5')
model.fit(X_train, y_train, epochs=epochs-start_epoch, batch_size=128, verbose=0)
return model
def cv(original_model, X, y, shape=None, k=k):
if isinstance(X, pd.DataFrame):
X = X.values
if issubclass(type(original_model), BaseEstimator):
cv_prediction = cross_val_predict(original_model, X, y, cv=KFold(k, shuffle=True))
else:
# fix random seed for reproducibility
seed = 7
np.random.seed(seed)
# define 10-fold cross validation test harness
kfold = KFold(n_splits=k, shuffle=True, random_state=seed)
y_random = []
cv_prediction = []
for i, (train, test) in enumerate(kfold.split(X, y)):
sys.stdout.write('{} of {} fold \r'.format(i+1, k))
sys.stdout.flush()
# # train model
if not hybrid:
model = original_model(shape)
model.fit(X[train], y[train], epochs=epochs, batch_size=128, verbose=0)
#validation_data=(X[test], y[test])
else:
model = hybrid_train(original_model, X[train], y[train], shape)
y_random.extend(y[test])
cv_prediction.extend(model.predict(X[test]))
K.clear_session()
y = y_random
return evaluation_plot(y, cv_prediction)
# ### K-fold Forward/Backward Validation
# In[ ]:
def fcv(original_model, X, y, minimum_ratio=0.1, maximum_ratio=0.95, reverse=False, shape=None, lite=False, k=k):
if isinstance(X, pd.DataFrame):
X = X.values
if not reverse:
arr1inds = y.argsort()
else:
arr1inds = y.argsort()[::-1]
X = X[arr1inds]
y = y[arr1inds]
if not maximum_ratio:
maximum_ratio = 1 - 1 / k
sample_number = len(X)
fold_sample_number = math.floor(sample_number / k)
minimum_sample_number = round(minimum_ratio * sample_number)
maxmum_sample_number = round(maximum_ratio * sample_number)
label = []
prediction = []
max_value = []
for split in range(fold_sample_number, sample_number, fold_sample_number if not lite else fold_sample_number*10):
if split < minimum_sample_number:
continue
if split > maxmum_sample_number:
break
# print("Training 0 to {}, validation on {} to {}".format(split, split, split + fold_sample_number))
sys.stdout.write("Training end in %s out of %s \r" % (split, sample_number))
sys.stdout.flush()
X_train = X[0:split]
y_train = y[0:split]
start_sample_number = split + (m - 1) * fold_sample_number
end_sample_number = split + m * fold_sample_number
if start_sample_number > sample_number:
break
else:
end_sample_number = min(end_sample_number, sample_number)
X_val = X[start_sample_number:end_sample_number]
y_val = y[start_sample_number:end_sample_number]
if issubclass(type(original_model), BaseEstimator):
model = clone(original_model)
model.fit(X_train, y_train)
else:
if not hybrid:
model = original_model(shape)
model.fit(X_train, y_train, epochs=epochs, batch_size=128, verbose=0)
else:
model = hybrid_train(original_model, X_train, y_train, shape)
y_pred = model.predict(X_val)
label.extend(list(y_val))
prediction.extend(list(y_pred))
max_value.extend([y[split-1]] * len(y_val))
if not issubclass(type(original_model), BaseEstimator):
K.clear_session()
return evaluation_plot(label, prediction, max_value)
def bcv(model, X, y, k=100, minimum_ratio=0.1, maximum_ratio=0.9, shape=None):
fcv(model, X, y, k, minimum_ratio, maximum_ratio, reverse=True, shape=shape)
def fbv(model, X, y, training_start=0.1, training_end=0.9, k=None, shape=None):
if isinstance(X, pd.DataFrame):
X = X.values
start = int(training_start*len(y))
end = int(training_end*len(y))
X_train = X[start:end]
y_train = y[start:end]
X_val_before = X[0:start]
y_val_before = y[0:start]
X_val_after = X[end:len(y)]
y_val_after = y[end:len(y)]
if issubclass(type(model), BaseEstimator):
model = clone(model)
model.fit(X_train, y_train)
else:
model = model(shape)
model.fit(X_train, y_train, epochs=30, batch_size=128, verbose=0)
y_train_pred = model.predict(X_train)
y_val_before_pred = model.predict(X_val_before)
y_val_after_pred = model.predict(X_val_after)
y_label = np.concatenate((y_val_before, y_train, y_val_after), axis=0)
y_pred = np.concatenate((y_val_before_pred, y_train_pred, y_val_after_pred), axis=0)
evaluation_plot(y_label, y_pred)
def iecv(original_model, X, y, minimum_ratio=0.1, maximum_ratio=0.95, reverse=False, shape=None, lite=True):
cv_result = cv(original_model, X, y, shape, k=5)
fcv_result = fcv(original_model, X, y, minimum_ratio, maximum_ratio, reverse, shape, lite, k=100)
print(cv_result[0])
print(fcv_result[0])
alpha = 0.5
beta = 1 - alpha
print(math.sqrt(alpha * cv_result[0]**2 + beta * fcv_result[0]**2))
# ## 5. Leave one out cross validation/K fold forward step cross validation
# In[ ]:
if __name__ == '__main__':
main()