-
Notifications
You must be signed in to change notification settings - Fork 178
/
Copy pathBiLSTM_ATT.py
85 lines (57 loc) · 3.06 KB
/
BiLSTM_ATT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#coding:utf8
import torch
import torch.nn as nn
import torch.nn.functional as F
torch.manual_seed(1)
class BiLSTM_ATT(nn.Module):
def __init__(self,config,embedding_pre):
super(BiLSTM_ATT,self).__init__()
self.batch = config['BATCH']
self.embedding_size = config['EMBEDDING_SIZE']
self.embedding_dim = config['EMBEDDING_DIM']
self.hidden_dim = config['HIDDEN_DIM']
self.tag_size = config['TAG_SIZE']
self.pos_size = config['POS_SIZE']
self.pos_dim = config['POS_DIM']
self.pretrained = config['pretrained']
if self.pretrained:
#self.word_embeds.weight.data.copy_(torch.from_numpy(embedding_pre))
self.word_embeds = nn.Embedding.from_pretrained(torch.FloatTensor(embedding_pre),freeze=False)
else:
self.word_embeds = nn.Embedding(self.embedding_size,self.embedding_dim)
self.pos1_embeds = nn.Embedding(self.pos_size,self.pos_dim)
self.pos2_embeds = nn.Embedding(self.pos_size,self.pos_dim)
self.relation_embeds = nn.Embedding(self.tag_size,self.hidden_dim)
self.lstm = nn.LSTM(input_size=self.embedding_dim+self.pos_dim*2,hidden_size=self.hidden_dim//2,num_layers=1, bidirectional=True)
self.hidden2tag = nn.Linear(self.hidden_dim,self.tag_size)
self.dropout_emb=nn.Dropout(p=0.5)
self.dropout_lstm=nn.Dropout(p=0.5)
self.dropout_att=nn.Dropout(p=0.5)
self.hidden = self.init_hidden()
self.att_weight = nn.Parameter(torch.randn(self.batch,1,self.hidden_dim))
self.relation_bias = nn.Parameter(torch.randn(self.batch,self.tag_size,1))
def init_hidden(self):
return torch.randn(2, self.batch, self.hidden_dim // 2)
def init_hidden_lstm(self):
return (torch.randn(2, self.batch, self.hidden_dim // 2),
torch.randn(2, self.batch, self.hidden_dim // 2))
def attention(self,H):
M = F.tanh(H)
a = F.softmax(torch.bmm(self.att_weight,M),2)
a = torch.transpose(a,1,2)
return torch.bmm(H,a)
def forward(self,sentence,pos1,pos2):
self.hidden = self.init_hidden_lstm()
embeds = torch.cat((self.word_embeds(sentence),self.pos1_embeds(pos1),self.pos2_embeds(pos2)),2)
embeds = torch.transpose(embeds,0,1)
lstm_out, self.hidden = self.lstm(embeds, self.hidden)
lstm_out = torch.transpose(lstm_out,0,1)
lstm_out = torch.transpose(lstm_out,1,2)
lstm_out = self.dropout_lstm(lstm_out)
att_out = F.tanh(self.attention(lstm_out))
#att_out = self.dropout_att(att_out)
relation = torch.tensor([i for i in range(self.tag_size)],dtype = torch.long).repeat(self.batch, 1)
relation = self.relation_embeds(relation)
res = torch.add(torch.bmm(relation,att_out),self.relation_bias)
res = F.softmax(res,1)
return res.view(self.batch,-1)