This repository has been archived by the owner on Dec 30, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathirep.R
173 lines (153 loc) · 5.07 KB
/
irep.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# IREP algotithm implementation
#' @author Michał Błotniak
#' @author Magdalena Rusiecka
library(caTools)
library(dplyr)
library(lazyeval)
#' Extract rules from provided dataset using IREP algorithm
#' based on Furnkranz and Widmer paper.
#'
#' @param pos Dataframe containing positive examples.
#' @param neg Dataframe containing negative examples.
#' @param splitRatio A number.
#' @param failAccuracyValue Minimal rule accuracy.
#' @return List of rules represented as vectors of attributes.
irep <- function(pos, neg, splitRatio, failAccuracyValue = failAccuracy(pos, neg)) {
rules <- list()
while (nrow(pos) > 0) {
pos.sample <- sample.split(pos[[1]], SplitRatio = splitRatio)
posGrow <- subset(pos, pos.sample == TRUE)
posPrune <- subset(pos, pos.sample == FALSE)
neg.sample <- sample.split(neg[[1]], SplitRatio = splitRatio)
negGrow <- subset(neg, neg.sample == TRUE)
negPrune <- subset(neg, neg.sample == FALSE)
rule <- rep(NA, ncol(neg))
while (nrow(negGrow) > 0) {
rule <- addLiteral(rule, posGrow, negGrow)
posGrow <- cover(rule, posGrow)
negGrow <- cover(rule, negGrow)
}
rule <- pruneRule(rule, posPrune, negPrune)
if (ruleAccuracy(rule, pos, neg) <= failAccuracyValue) {
class(rules) <- 'irep'
return(rules)
} else {
pos <- setdiff(pos, cover(rule, pos))
neg <- setdiff(neg, cover(rule, neg))
rules <- c(rules, list(rule))
}
}
class(rules) <- 'irep'
return(rules)
}
#' Returns a vector of predicted responses from a fitted irep object.
#'
#' @param object Fitted model object of class "irep".
#' @param newdata Dataframe of new data to predict.
#' @return Vector of predicted responses (TRUE/FALSE)
predict.irep <- function(object, newdata) apply(newdata, 1, function (example) matchRules(object, example))
#' Match example against many rules.
#'
#' @param rules Fitted rules from "irep" model.
#' @param example Single example as vector of attributes.
#' @return Rules prediction (TRUE/FALSE).
matchRules <- function(rules, example) {
if (length(rules) == 0) return(TRUE)
rules %>% sapply(function(rule) matchRule(rule, example)) %>% any
}
#' Match example against one rule.
#'
#' @param rules Single rule represented as vector of attributes.
#' @param example Single example as vector of attributes.
#' @return Rules prediction (TRUE/FALSE).
matchRule <- function(rule, example) all(rule == example, na.rm = TRUE)
#' Grow rule with one literal.
#'
#' @param rule Rule represented as vector of attributes.
#' @param pos Dataframe containing positive examples.
#' @param neg Dataframe containing negative examples.
#' @return Rule with new literal added.
addLiteral <- function(rule, pos, neg) {
bestAccuracy <- -1
newRule <- rule
for (i in 1:length(rule)) {
if (is.na(rule[i])) {
values <- list(pos[[i]], neg[[i]]) %>% unlist %>% unique
values <- values[!is.na(values)]
for (v in values) {
TP <- sum(pos[[i]] == v, na.rm = TRUE)
FN <- sum(neg[[i]] == v, na.rm = TRUE)
TN <- nrow(neg) - FN
accuracy <- (TP + TN) / (nrow(pos) + nrow(neg))
if (accuracy > bestAccuracy) {
bestAccuracy <- accuracy
newRule <- rule
newRule[i] <- v
}
}
}
}
newRule
}
#' Prune maximizing rule accuracy.
#'
#' @param rule Rule represented as vector of attributes.
#' @param pos Dataframe containing positive examples.
#' @param neg Dataframe containing negative examples.
#' @return Pruned rule.
pruneRule <- function(rule, pos, neg) {
best <- ruleAccuracy(rule, pos, neg)
repeat {
accuracies <- rep(0, length(rule))
for (i in 1:length(rule)) {
if (!is.na(rule[i])) {
newRule <- rule
newRule[i] <- NA
accuracies[i] <- ruleAccuracy(newRule, pos, neg)
}
}
newMax <- max(accuracies)
if (sum(!is.na(rule)) > 1 && best < newMax) {
best <- newMax
rule[which.max(accuracies)] <- NA
} else {
return(rule)
}
}
}
#' Get fail accuracy for provided dataset.
#'
#' @param pos Dataframe containing positive examples.
#' @param neg Dataframe containing negative examples.
#' @return A number - fail accuracy.
failAccuracy <- function(pos, neg) {
P <- nrow(pos)
N <- nrow(neg)
N / (P + N)
}
#' Get accuracy of rule on provided dataset.
#'
#' @param rule Rule represented as vector of attributes.
#' @param pos Dataframe containing positive examples.
#' @param neg Dataframe containing negative examples.
#' @return A number - rule accuracy.
ruleAccuracy <- function(rule, pos, neg) {
TP <- rule %>% cover(pos) %>% nrow
FN <- rule %>% cover(neg) %>% nrow
TN <- nrow(neg) - FN
(TP + TN) / (nrow(pos) + nrow(neg))
}
#' Filter dataframe with provided rule.
#'
#' @param rule Rule represented as vector of attributes.
#' @param df Dataframe to filter.
#' @return Filtered dataframe.
cover <- function(rule, df) {
filterConds <- c()
for (i in 1:length(rule)) {
if(!is.na(rule[i])) {
filterConds <- c(filterConds, interp(~df[[i]] == x, i = i, x = rule[i]))
}
}
filter_(df, .dots=filterConds)
}