diff --git a/ITP/encoding.tex b/ITP/encoding.tex index ede32f4..1e18466 100644 --- a/ITP/encoding.tex +++ b/ITP/encoding.tex @@ -133,7 +133,7 @@ of points on either side of $\overleftrightarrow{ab}$. That is: \begin{lstlisting} -theorem split_convexHull (cvx : ConvexPoints S) : +theorem split_convexHull (cvx : ConvexIndep S) : ∀ {a b}, a ∈ S → b ∈ S → convexHull ℝ S ⊆ convexHull ℝ {x ∈ S | σ a b x ≠ ccw} ∪ convexHull ℝ {x ∈ S | σ a b x ≠ cw} diff --git a/ITP/fig_triangulation.tex b/ITP/fig_triangulation.tex index 27869cb..c767897 100644 --- a/ITP/fig_triangulation.tex +++ b/ITP/fig_triangulation.tex @@ -66,5 +66,5 @@ \end{tikzpicture} \caption{}\label{fig:triangulation-b} \end{subfigure} - \caption{Illustration of the proof for \lstinline|ConvexEmptyIn.iff_triangles|. The left subfigure shows how a point in $S \setminus s$ that lies inside $s$ will be inside one of the triangles induced by the convex hull of $s$ (orange triangle). The right subfigure shows how if the $\textsf{ConvexPoints}$ predicate does not hold of $s$, then some point $a \in s$ will be inside one of the triangles induced by the convex hull of $s \setminus \{a\}$.}\label{fig:triangulation} + \caption{Illustration of the proof for \lstinline|ConvexEmptyIn.iff_triangles|. The left subfigure shows how a point in $S \setminus s$ that lies inside $s$ will be inside one of the triangles induced by the convex hull of $s$ (orange triangle). The right subfigure shows how if the $\textsf{ConvexIndep}$ predicate does not hold of $s$, then some point $a \in s$ will be inside one of the triangles induced by the convex hull of $s \setminus \{a\}$.}\label{fig:triangulation} \end{figure} diff --git a/ITP/geometry.tex b/ITP/geometry.tex index da110d0..4db59d9 100644 --- a/ITP/geometry.tex +++ b/ITP/geometry.tex @@ -7,13 +7,13 @@ def EmptyShapeIn (S P : Set Point) : Prop := ∀ p ∈ P \ S, p ∉ convexHull ℝ S -/-- `ConvexPoints S' means that `S' consists of extremal points of its convex hull, +/-- `ConvexIndep S' means that `S' consists of extremal points of its convex hull, i.e., the point set encloses a convex polygon. -/ -def ConvexPoints (S : Set Point) : Prop := +def ConvexIndep (S : Set Point) : Prop := ∀ a ∈ S, a ∉ convexHull ℝ (S \ {a}) def ConvexEmptyIn (S P : Set Point) : Prop := - ConvexPoints S ∧ EmptyShapeIn S P + ConvexIndep S ∧ EmptyShapeIn S P def HasEmptyKGon (k : Nat) (S : Set Point) : Prop := ∃ s : Finset Point, s.card = k ∧ ↑s ⊆ S ∧ ConvexEmptyIn s S @@ -37,10 +37,10 @@ \end{lstlisting} \input{fig_triangulation.tex} \begin{proof}[Proof sketch] - We first prove a simple monotonicity lemma: if $\textsf{ConvexPoints}(s)$, then $\textsf{ConvexPoints}(s')$ for every $s' \subseteq s$, and similarly $\textsf{EmptyShapeIn}(s, S) \Rightarrow \textsf{EmptyShapeIn}(s', S)$ for every set of points $S$. + We first prove a simple monotonicity lemma: if $\textsf{ConvexIndep}(s)$, then $\textsf{ConvexIndep}(s')$ for every $s' \subseteq s$, and similarly $\textsf{EmptyShapeIn}(s, S) \Rightarrow \textsf{EmptyShapeIn}(s', S)$ for every set of points $S$. By instantiating this monotonicity lemma over all subsets $t \subseteq s$ with $|t| = 3$ we get the forward direction of the theorem. - For the backward direction it is easier to reason contrapositively: if the~$\textsf{ConvexPoints}$ predicate does not hold of $s$, or if $s$ is not empty w.r.t.~$S$, then we want to show that there is a triangle $t \subseteq s$ that is also not empty w.r.t.~$S$. To see this, let $H$ be the convex hull of $s$, and then by Carath\'eodory's theorem (cf. \lstinline|theorem convexHull_eq_union| from \textsf{mathlib}), every point in $H$ is a convex combination of at most $3$ points in $s$, and consequently, of exactly $3$ points in $s$. - If $s$ is non-empty w.r.t.~$S$, then there is a point $p \in S \setminus s$ that belongs to $H$, and by Carath\'eodory, $p$ is a convex combination of $3$ points in $s \setminus \{a\}$, and thus lies inside a triangle $t \subseteq s$ (\Cref{fig:triangulation-a}). If $s$ does not hold $\textsf{ConvexPoints}$, then there is a point $a \in s$ such that $a \in \textsf{convexHull}(s \setminus \{a\})$, and by Carath\'eodory again, $a$ is a convex combination of $3$ points in $s$, and thus lies inside a triangle $t \subseteq s \setminus \{a\}$ (\Cref{fig:triangulation-b}). + For the backward direction it is easier to reason contrapositively: if the~$\textsf{ConvexIndep}$ predicate does not hold of $s$, or if $s$ is not empty w.r.t.~$S$, then we want to show that there is a triangle $t \subseteq s$ that is also not empty w.r.t.~$S$. To see this, let $H$ be the convex hull of $s$, and then by Carath\'eodory's theorem (cf. \lstinline|theorem convexHull_eq_union| from \textsf{mathlib}), every point in $H$ is a convex combination of at most $3$ points in $s$, and consequently, of exactly $3$ points in $s$. + If $s$ is non-empty w.r.t.~$S$, then there is a point $p \in S \setminus s$ that belongs to $H$, and by Carath\'eodory, $p$ is a convex combination of $3$ points in $s \setminus \{a\}$, and thus lies inside a triangle $t \subseteq s$ (\Cref{fig:triangulation-a}). If $s$ does not hold $\textsf{ConvexIndep}$, then there is a point $a \in s$ such that $a \in \textsf{convexHull}(s \setminus \{a\})$, and by Carath\'eodory again, $a$ is a convex combination of $3$ points in $s$, and thus lies inside a triangle $t \subseteq s \setminus \{a\}$ (\Cref{fig:triangulation-b}). % The % The forward direction is easy to see, as triangles are always convex, and if $s$ is empty w.r.t.~$S$, then so are the triangles induced by vertices of $s$. % Let $T = \{t_1, \ldots, t_{{k \choose 3}}\}$ be all the triangles induced by vertices of $s$. diff --git a/Lean/Geo.lean b/Lean/Geo.lean index ef89fab..dfc57a3 100644 --- a/Lean/Geo.lean +++ b/Lean/Geo.lean @@ -14,16 +14,16 @@ other than those already in `S`. -/ recall Geo.EmptyShapeIn (S P : Set Point) : Prop := ∀ p ∈ P \ S, p ∉ convexHull ℝ S -/- `ConvexPoints S` means that `S` consists of extremal points of its convex hull, +/- `ConvexIndep S` means that `S` consists of extremal points of its convex hull, i.e. the point set encloses a convex polygon. Also known as a "convex-independent set". -/ -recall Geo.ConvexPoints (S : Set Point) : Prop := +recall Geo.ConvexIndep (S : Set Point) : Prop := ∀ a ∈ S, a ∉ convexHull ℝ (S \ {a}) recall Geo.HasConvexKGon (n : Nat) (S : Set Point) : Prop := - ∃ s : Finset Point, s.card = n ∧ ↑s ⊆ S ∧ ConvexPoints s + ∃ s : Finset Point, s.card = n ∧ ↑s ⊆ S ∧ ConvexIndep s recall Geo.HasEmptyKGon (n : Nat) (S : Set Point) : Prop := - ∃ s : Finset Point, s.card = n ∧ ↑s ⊆ S ∧ ConvexPoints s ∧ EmptyShapeIn s S + ∃ s : Finset Point, s.card = n ∧ ↑s ⊆ S ∧ ConvexIndep s ∧ EmptyShapeIn s S /- `gonNumber k` is the smallest number `n` such that every set of `n` or more points in general position contains a convex-independent set of size `k`. -/ diff --git a/Lean/Geo/Definitions/OrientationProperties.lean b/Lean/Geo/Definitions/OrientationProperties.lean index 420cc30..ec28338 100644 --- a/Lean/Geo/Definitions/OrientationProperties.lean +++ b/Lean/Geo/Definitions/OrientationProperties.lean @@ -81,7 +81,7 @@ theorem σHasConvexKGon_iff_HasConvexKGon (gp : Point.ListInGenPos pts) : unfold σHasConvexKGon HasConvexKGon refine exists_congr fun s => and_congr_right' <| and_congr_right fun spts => ?_ have gp' := gp.toFinset - rw [ConvexPoints.iff_triangles'' (gp'.mono spts)] + rw [ConvexIndep.iff_triangles'' (gp'.mono spts)] iterate 9 refine forall_congr' fun _ => ?_ rw [σIsEmptyTriangleFor_iff'' (gp'.mono spts)] <;> simp [EmptyShapeIn, PtInTriangle, *] @@ -227,7 +227,7 @@ theorem σCCWPoints.cycle (H : σCCWPoints (l₁ ++ l₂)) : σCCWPoints (l₂ + fun c hc => (H4 c hc).imp <| Eq.trans (by rw [σ_perm₁, ← σ_perm₂]), fun a ha => (H3 a ha).imp <| Eq.trans (by rw [σ_perm₂, ← σ_perm₁])⟩ -theorem σCCWPoints.convex (H : σCCWPoints l) : ConvexPoints l.toFinset := by +theorem σCCWPoints.convex (H : σCCWPoints l) : ConvexIndep l.toFinset := by refine ((ConvexEmptyIn.iff_triangles'' subset_rfl H.gp).2 ?_).1 simp only [mem_toFinset, Finset.mem_sdiff, Finset.mem_insert, Finset.mem_singleton, not_or, and_imp] diff --git a/Lean/Geo/Definitions/Structures.lean b/Lean/Geo/Definitions/Structures.lean index c2f1f28..cc1d29c 100644 --- a/Lean/Geo/Definitions/Structures.lean +++ b/Lean/Geo/Definitions/Structures.lean @@ -21,14 +21,14 @@ theorem emptyShapeIn_congr_right {S : Set Point} (h : ∀ p ∉ S, p ∈ P₁ EmptyShapeIn S P₁ ↔ EmptyShapeIn S P₂ := forall_congr' fun _ => imp_congr_left <| and_congr_left (h _) -/-- `ConvexPoints S` means that `S` consists of extremal points of its convex hull, +/-- `ConvexIndep S` means that `S` consists of extremal points of its convex hull, i.e. the point set encloses a convex polygon. Also known as a "convex-independent set". -/ -def ConvexPoints (S : Set Point) : Prop := +def ConvexIndep (S : Set Point) : Prop := ∀ a ∈ S, a ∉ convexHull ℝ (S \ {a}) open Classical -theorem ConvexPoints.triangle_iff {a b c : Point} {h : [a, b, c].Nodup} : - ConvexPoints (Finset.mk (α := Point) [a,b,c] h) ↔ Point.InGenPos₃ a b c := by +theorem ConvexIndep.triangle_iff {a b c : Point} {h : [a, b, c].Nodup} : + ConvexIndep (Finset.mk (α := Point) [a,b,c] h) ↔ Point.InGenPos₃ a b c := by constructor <;> intro h2 · simp [not_or, Set.subset_def] at h ⊢ refine Point.InGenPos₃.iff_not_mem_seg.2 ⟨?_, ?_, ?_⟩ <;> @@ -44,7 +44,7 @@ theorem ConvexPoints.triangle_iff {a b c : Point} {h : [a, b, c].Nodup} : · exact h2.2.1 (convexHull_mono (by simp [Set.subset_def]) hp2) · exact h2.2.2 (convexHull_mono (by simp [Set.subset_def]) hp2) -theorem ConvexPoints.lt_3 {s : Finset Point} (hs : s.card < 3) : ConvexPoints s := by +theorem ConvexIndep.lt_3 {s : Finset Point} (hs : s.card < 3) : ConvexIndep s := by intro a ha hn rw [← Finset.coe_erase] at hn have := Nat.le_of_lt_succ <| (Finset.card_erase_lt_of_mem ha).trans_le (Nat.le_of_lt_succ hs) @@ -55,25 +55,25 @@ theorem ConvexPoints.lt_3 {s : Finset Point} (hs : s.card < 3) : ConvexPoints s subst eq; simp at hn; subst b simpa using congrArg (a ∈ ·) e1 -theorem ConvexPoints.triangle' {s : Finset Point} {S : List Point} +theorem ConvexIndep.triangle' {s : Finset Point} {S : List Point} (hs : s.card ≤ 3) (sS : s ⊆ S.toFinset) (gp : Point.ListInGenPos S) : - ConvexPoints s := by + ConvexIndep s := by cases lt_or_eq_of_le hs with - | inl hs => exact ConvexPoints.lt_3 hs + | inl hs => exact ConvexIndep.lt_3 hs | inr hs => match s, s.exists_mk with | _, ⟨[a,b,c], h1, rfl⟩ => ?_ - rw [ConvexPoints.triangle_iff] + rw [ConvexIndep.triangle_iff] apply Point.ListInGenPos.subperm.1 gp exact List.subperm_of_subset h1 (by simpa [Finset.subset_iff] using sS) -theorem ConvexPoints.antitone {S₁ S₂ : Set Point} (S₁S₂ : S₁ ⊆ S₂) - (convex : ConvexPoints S₂) : ConvexPoints S₁ := by +theorem ConvexIndep.antitone {S₁ S₂ : Set Point} (S₁S₂ : S₁ ⊆ S₂) + (convex : ConvexIndep S₂) : ConvexIndep S₁ := by intro a aS₁ aCH have : S₁ \ {a} ⊆ S₂ \ {a} := Set.diff_subset_diff S₁S₂ (le_refl _) apply convex a (S₁S₂ aS₁) (convexHull_mono this aCH) def ConvexEmptyIn (S P : Set Point) : Prop := - ConvexPoints S ∧ EmptyShapeIn S P + ConvexIndep S ∧ EmptyShapeIn S P theorem ConvexEmptyIn.antitone_left {S₁ S₂ P : Set Point} (S₁S₂ : S₁ ⊆ S₂) : ConvexEmptyIn S₂ P → ConvexEmptyIn S₁ P := by @@ -84,7 +84,7 @@ theorem ConvexEmptyIn.antitone_left {S₁ S₂ P : Set Point} (S₁S₂ : S₁ @[simp] theorem ConvexEmptyIn.refl_iff {S : Set Point} : - ConvexEmptyIn S S ↔ ConvexPoints S := + ConvexEmptyIn S S ↔ ConvexIndep S := ⟨(·.left), (⟨·, EmptyShapeIn.rfl⟩)⟩ theorem ConvexEmptyIn.iff {S P : Set Point} (SP : S ⊆ P) : @@ -123,11 +123,11 @@ theorem ConvexEmptyIn.iff_triangles' {s : Finset Point} {S : List Point} have' sS' : (s:Set _) ⊆ S.toFinset := sS rw [ConvexEmptyIn.iff_triangles sS' sz] simp (config := {contextual := true}) [ConvexEmptyIn, - fun a b => ConvexPoints.triangle' a (subset_trans b sS) gp] + fun a b => ConvexIndep.triangle' a (subset_trans b sS) gp] else constructor <;> intro · intro _ h1 h2; cases sz (h1 ▸ Finset.card_le_card h2) - · refine ⟨ConvexPoints.lt_3 (not_le.1 sz), fun p ⟨pS, pn⟩ pS' => pn ?_⟩ + · refine ⟨ConvexIndep.lt_3 (not_le.1 sz), fun p ⟨pS, pn⟩ pS' => pn ?_⟩ have := Nat.le_of_lt_succ <| not_le.1 sz match s.exists_mk, this with | ⟨[], _, (eq : s = ∅)⟩, _ => subst eq; simp at pS' @@ -162,16 +162,16 @@ theorem ConvexEmptyIn.iff_triangles'' {s : Finset Point} {S : List Point} simp at hp ⊢ assumption -theorem ConvexPoints.iff_triangles' {s : Finset Point} (gp : Point.SetInGenPos s) : - ConvexPoints s ↔ ∀ (t : Finset Point), t.card = 3 → t ⊆ s → EmptyShapeIn t s := by +theorem ConvexIndep.iff_triangles' {s : Finset Point} (gp : Point.SetInGenPos s) : + ConvexIndep s ↔ ∀ (t : Finset Point), t.card = 3 → t ⊆ s → EmptyShapeIn t s := by have : s = s.toList.toFinset := s.toList_toFinset.symm rw [← ConvexEmptyIn.refl_iff, this, ← ConvexEmptyIn.iff_triangles' subset_rfl] apply Point.SetInGenPos.of_nodup simp [gp] exact Finset.nodup_toList s -theorem ConvexPoints.iff_triangles'' {s : Finset Point} (gp : Point.SetInGenPos s) : - ConvexPoints s ↔ +theorem ConvexIndep.iff_triangles'' {s : Finset Point} (gp : Point.SetInGenPos s) : + ConvexIndep s ↔ ∀ᵉ (a ∈ s) (b ∈ s) (c ∈ s), a ≠ b → a ≠ c → b ≠ c → ∀ p ∈ s \ {a,b,c}, ¬PtInTriangle p a b c := by have : s = s.toList.toFinset := s.toList_toFinset.symm @@ -181,7 +181,7 @@ theorem ConvexPoints.iff_triangles'' {s : Finset Point} (gp : Point.SetInGenPos exact Finset.nodup_toList s open Point in -theorem split_convexHull (cvx : ConvexPoints S) : +theorem split_convexHull (cvx : ConvexIndep S) : ∀ {a b}, a ∈ S → b ∈ S → convexHull ℝ S ⊆ convexHull ℝ {x ∈ S | σ a b x ≠ .ccw} ∪ @@ -254,7 +254,7 @@ theorem split_convexHull (cvx : ConvexPoints S) : right; refine (convex_convexHull ..).segment_subset hv ?_ this simp at zab; refine segment_subset_convexHull ?_ ?_ zab <;> simp [S2, ha, hb, σ_self₁, σ_self₂] -theorem EmptyShapeIn.split (cvx : ConvexPoints S) (ha : a ∈ S) (hb : b ∈ S) +theorem EmptyShapeIn.split (cvx : ConvexIndep S) (ha : a ∈ S) (hb : b ∈ S) (H1 : EmptyShapeIn {x ∈ S | σ a b x ≠ .ccw} P) (H2 : EmptyShapeIn {x ∈ S | σ a b x ≠ .cw} P) : EmptyShapeIn S P := fun _ ⟨pP, pS⟩ hn => (split_convexHull cvx ha hb hn).elim (H1 _ ⟨pP, mt And.left pS⟩) (H2 _ ⟨pP, mt And.left pS⟩) @@ -263,6 +263,6 @@ def HasEmptyKGon (n : Nat) (S : Set Point) : Prop := ∃ s : Finset Point, s.card = n ∧ ↑s ⊆ S ∧ ConvexEmptyIn s S def HasConvexKGon (n : Nat) (S : Set Point) : Prop := - ∃ s : Finset Point, s.card = n ∧ ↑s ⊆ S ∧ ConvexPoints s + ∃ s : Finset Point, s.card = n ∧ ↑s ⊆ S ∧ ConvexIndep s end Geo diff --git a/Lean/attic/Triangle/TheMainTheorem.lean b/Lean/attic/Triangle/TheMainTheorem.lean index 6deead7..05d64d9 100644 --- a/Lean/attic/Triangle/TheMainTheorem.lean +++ b/Lean/attic/Triangle/TheMainTheorem.lean @@ -19,12 +19,12 @@ theorem HasEmptyTriangle.iff (S : Set Point) : match s, s.exists_mk with | _, ⟨[a,b,c], h1, rfl⟩ => ?_ have s_eq : (Finset.mk (Multiset.ofList [a,b,c]) h1 : Set _) = {a, b, c} := by ext; simp simp [not_or, Set.subset_def] at h1 h2 h3 ⊢ - refine ⟨a, h2.1, b, h2.2.1, c, h2.2.2, ConvexPoints.triangle_iff.1 h3, ?_⟩ + refine ⟨a, h2.1, b, h2.2.1, c, h2.2.2, ConvexIndep.triangle_iff.1 h3, ?_⟩ simpa [not_or, EmptyShapeIn, s_eq] using h4 · intro ⟨a, ha, b, hb, c, hc, h1, h2⟩ let s : Finset Point := ⟨[a,b,c], by simp [h1.ne₁, h1.ne₂, h1.ne₃]⟩ have s_eq : s = {a,b,c} := by ext; simp - refine ⟨s, rfl, ?_, ConvexPoints.triangle_iff.2 h1, ?_⟩ + refine ⟨s, rfl, ?_, ConvexIndep.triangle_iff.2 h1, ?_⟩ · simp [Set.subset_def, ha, hb, hc] · simpa [s_eq, EmptyShapeIn] using h2