
Native IFC
A white-paper introducing a collaborative BIM using open standards and open protocols

Abstract
A simple to implement set of protocols for reading and writing BIM data, known as Native IFC, enables
robust multi-user collaborative BIM workflows. We show how full version tracking, rollback, attribution,
staging, merging, multi-user editing, issue tracking, automated checking, and publishing can be achieved
by hosting IFC data in established commercial and open source git-forge services. We show that the git
revision control system as a Common Data Environment (CDE) for BIM data is scalable, secure,
future-proof and fully interoperable with existing systems. We show multiple software applications and
libraries that already implement Native IFC, this is a real-world technology.

Motivation
Building Information Modelling (BIM) is a process of modelling entire buildings as things, information, and
the relationships between them.

BIM is generally done with large software applications that keep their data in proprietary files. These are
shared in what is called a Common Data Environment (CDE), effectively a file server that can be accessed
remotely.

This way of doing Collaborative BIM has disadvantages: one of them is that such a system can't be called
interoperable without exporting data to open formats such as Industry Foundation Classes (IFC) and
sharing these exported files; this in turn means that it isn't practical for multiple people to contribute to the
same model without problematic workarounds.

A system where data is exported from one application and imported into another is a one-way street.
Round-tripping through import/export necessarily involves data loss, design teams therefore construct
workflows so that round-tripping never happens. Where multiple trades and consultants are involved in a
project, typically each will be given strictly delimited parts of the project to work-on, making their parts
available to the rest of the team as a read-only reference. This division of labour is termed 'federation',
where each trade owns a separate file, usually with the architectural part providing overall coordination (A
proprietary form of this, 'worksharing', allows this division of labour to occur within a single file, but it
requires that all users are using the same proprietary application and file format).

Dividing work into fragments that can each only be edited by one person at a time creates bottlenecks. In
this situation, an architect can't work on the ground floor of a building while their colleague sat next to them
works on the roof.

Separating trades into silos that can't modify each other's data has further disadvantages: A structural
engineer can't provisionally move a door in the architect's model; they have to create a sketch showing
how they think the door should move, send it in an email to the architect, hoping then that the architect
might update their model at some point - eventually this moved door will cascade into the federated model
that everyone sees. Another example, in a real-life construction project, buildings are never built exactly
as-drawn; a responsible contractor will update a BIM model 'as-built', but these updates can't be fed-back
upstream so that everybody has the same model, this would require import, update, export, import and
export steps - overwriting the upstream models in the process.

In contrast, the way we write and maintain software is not at all like the way buildings are designed and
managed with BIM. Many software projects have lots of contributors, often working on the same files at the
same time, using systems that scale to thousands of developers.

Software development has settled on a few collaborative practices and tools: we store our files in
distributed systems like the git version control system, and we work by 'forking' a copy, making local
changes, then requesting that others 'pull' our changes, merging them with their own.

https://technical.buildingsmart.org/standards/ifc
https://git-scm.com/

This collaborative software development wouldn't be possible without a specific technology: the three-way
merge. A 'three-way merge' allows two people to make independent changes to the same file, then merge
them together using the common 'ancestor' as a base reference.

We assert that what the AEC community needs is the equivalent of a 'three-way merge' for BIM data.
Consequently, this whitepaper introduces a working three-way merge tool for Native IFC data. This Native
IFC workflow enables genuine interoperable distributed BIM collaboration, reusing tools long available in
the software world: git-forge services such as GitHub, trackers, discussion, tagging, releases and
continuous integration.

Rationale
We propose a new paradigm, creating and editing IFC data in-place without import/export translation to
proprietary models: Native IFC.

We note that Native IFC data in SPF (STEP Physical File) format is a good fit for storage in distributed
Revision Control Systems such as git or mercurial. Native IFC changesets are small, limited to just the
modified, deleted or added data - a small change to a huge file represents a few bytes of data. Git
repositories contain full history, allowing design development to be reconstructed at any time. Git is an
open standard, repositories can be local, or hosted online in 'forges', and transferred elsewhere without
loss of history. Git scales, in 2017 the entire Microsoft Windows code base moved to git into a single 300
GigaByte repository.

We propose that multiple users should be able to work on BIM models asynchronously, updating using a
three-way merge process. However for a modern branch, fork, pull-request and merge workflow, the
standard three-way merge approach used for software sourcecode simply doesn't work for IFC files. This
is because sourcecode is ordered by line, for each line of sourcecode the adjacent contextual lines are
extremely relevant. SPF files are ordered by numeric ID, each entity may appear anywhere in the file, but
the unique ID is the key to accessing the entity. We find that tracking of modified, deleted and added SPF
IDs is sufficient to characterise the difference between two SPF files. Further, tracking SPF IDs allows
robust three-way merging of Native IFC files, enabling the collaborative branching/merging workflow
described above.

This ability for multiple users to edit the same Native IFC file asynchronously changes the basic rationale
for federated files within collaborative design projects. Computer resources constrain the maximum
practical size of individual IFC files, this constraint will primarily determine the number of files required in a
federated BIM model consisting of Native IFC files. In a small construction project it is possible, though not
necessarily desirable, for all project stakeholders to work with a single Native IFC file.

BIM is not just objects and information, but relationships between this data. With a federated model,
defining a relationship between elements that exist in separate files is not straightforward. For example,
spatial containers such as rooms and storeys are typically defined in an architectural model, a federated
building services model can't assign equipment to these spaces as a result. Native IFC offers solutions to
these sorts of problems by putting data where it is needed rather than where software constraints require it
to be put.

Git-forge services typically have advanced issue tracking, discussion, repository management and
automation via continuous integration. These features potentially provide a complete replacement CDE
(common data environment). These Services can be self-hosted using Open Source forges such as Gitea.
Commercial services such as Github offer guaranteed availability, advanced user management and
access control for millions of existing users and organisations.

Continuous integration triggered by 'commit hooks' allows problems and status changes to be tracked and
reported automatically. Generation of documentation, 2D drawings, schedules etc.. from IFC models can
potentially be automated and regenerated automatically for each tagged-release. In the future, costings,
carbon analysis, thermal, structural analysis, any number of other checks can all be performed for every
commit - giving short feedback cycles needed when designing complex systems.

Native IFC is easy to compare, we envisage that web-viewers will soon be able to browse changes
between arbitrary git revisions, previewing pull-requests and allowing project stakeholders access to the
latest official BIM model, or even to watch work in progress.

https://en.m.wikipedia.org/wiki/Forge_(software)
https://devblogs.microsoft.com/bharry/the-largest-git-repo-on-the-planet/
https://en.m.wikipedia.org/wiki/Forge_(software)
https://gitea.io/
https://github.com/

git-forge
based CDE

Native IFC
information models

From ISO 19650-1:2018, A perspective on stages of maturity of analogue and digital information
management. Added in red: Native IFC information layer and git-forge technology layer.

Specification
A basic feature of Native IFC is that as long as simple rules are followed, multiple tools from multiple
vendors can work on the same IFC data without conflict.

Technical requirements
A Native IFC application behaves in the following ways when editing a pre-existing IFC (STEP/SPF) file:

1. IFC entities must be written in the same format as received, with the same numeric IDs as before.
Sorting the lines by numeric ID is recommended.

2. Attribute changes to entities must be written in-place, preserving the numeric ID of the entity.

3. Numeric IDs of deleted entities must not be reused for new entities.

General principles
Data is not mangled during I/O, the IFC data is the source of truth. This means that an application does not
translate to internal data models and export back to IFC unless the user is modifying that bit of data.

Data is never lost outside the application scope: an application operation touches only the IFC subgraphs
that is relevant to its function. This means that there must be no 'side effects' or 'domino effects' of data
loss by touching data in one spot. E.g. editing an object attribute should not affect related materials,
assigned tasks, or cost items.

Data is added without affecting existing data.

STEP/SPF IDs are critical to uniquely identify any little bit of IFC data. So any non-STEP tool that used IFC
GUIDs instead would need clear ways of navigating from rooted entities in order to map back and forth
with ID preserving STEP repositories.

Data is modified in place where possible: things like attributes and properties can be modified in place.
However, there are some things that are ambiguous, like brep/tessellation shape representation
subgraphs, which can be treated as 'trash and recreate' if they have been modified. Though parametric
extrusions and similar can be edited in-place, so they should.

Data is exposed through an application UI starting at rooted IFC entities. The concept is that unless the
Native IFC tool is some developer poweruser thing, the user should always be presented clearly with
rooted entities as a starting point, which then access the auxiliary data. This allows some level of sanity of
exchanging data with the ability to think in terms of rooted entities. There are some unfortunate exceptions
to this, like materials and profiles which are critical to many disciplines but not given first class IFC status in
the existing specification.

This fragment shows a 22 character UUID in a Rooted IfcWall element, SPF IDs are numbers represented
as #67, #68 etc..:

#66=IFCWALL('3R7E9y7gP4mOZz4rQTYinB',$,'exterior',$,$,#67,#68,$,.SOLIDWALL.);
#67=IFCLOCALPLACEMENT(#65,#184);
#68=IFCPRODUCTDEFINITIONSHAPE($,$,(#178,#180));

Description of an IFC three-way merge tool
A three-way merge tool requires a base file, a common-ancestor of the changed local and remote files.
The git merge command automatically finds this nearest base common-ancestor in the git repository, so
you don't have to.

Merging analysis determines which STEP IDs have been modified, deleted or added between the base
and the local, the same process is performed for differences between the base and remote.

If entities have been added to both the local and remote files, the locally added entities and any references
to them are renumbered/incremented such that there are no duplicate IDs. Added entities can then be
merged into the base without conflict.

Deleted entities from either branch are removed from the base. However entities that are deleted in one
branch and modified in the other will cause the merge to be abandoned, this will need to be resolved
manually before trying again.

Merges of software source code will fail badly if the same entity/line has been modified in both branches.
However, STEP entities are structured, with fixed count and ordering of attributes, so if different attributes
have been modified in each branch, both changes can be transferred to the merged output. This allows,
for example, the Name and Representation of a Wall to be modified in respective branches without
conflict. Further, many entity attributes are just lists of STEP IDs; additions and deletions to these lists can
also be merged. This allows, for example, elements to be added to a Spatial zone or Aggregate in both
branches.

This is a short description, but hopefully it illustrates that Native IFC files are considerably better suited to
this three-way merge process than software source-code. For further details, please refer to ifcmerge, a
reference implementation of a three-way merge tool for IFC/SPF data.

Backwards compatibility
Although Native IFC expects applications to take the steps described above to ensure file continuity, the
files themselves are entirely normal standards-compliant IFC STEP files, which can still be imported by
legacy applications.

A file maintained under Native IFC protocols can even be used within a legacy federated BIM collaboration
setup, either as a read-only overlay imported into legacy tools, or using files exported by legacy tools as
federated overlays. Such arrangements may last for the duration of multi-year construction projects
without incurring additional administration costs.

Native IFC files are fully interoperable in any such openBIM scenario.

https://github.com/brunopostle/ifcmerge
https://www.buildingsmart.org/about/openbim/

Security implications
It is important to consider how a malicious actor could exploit any data protocol, such an attack could
come from outside or inside a project team.

Confidentiality
There is a distinction between normal expectations of privacy of occupants and designers, and potential
criminal attacks on the building itself using privileged information. Most git-forge services allow
fine-grained access control, including requiring multi-factor authentication for read-only access, so
confidentiality is eminently achievable if required. Git allows commits to be 'squashed' together before
sharing, so evidence of wasted effort, corrected mistakes, or weekend working does not have to be shared
with the rest of the design team. We believe that the threat of burglary or terrorism from access to BIM
data is overblown, these are 'movie-plot threats' that are only relevant in specialist contexts, ordinary
buildings are just not that different from each other. An analogy that can be drawn from software is that
publically available and auditable software is generally considered positive for security.

Intellectual property
As above, git-forge access control can offer read-only restrictions. With git, since the authorship of
commits is recorded, it is possible to identify exactly the design ownership of models or part models.

A consideration is that there are advantages to allowing wider access to BIM models, some examples: an
active citizen may be entitled to examine publicly funded construction projects in detail; sharing
best-practice can improve the general quality of construction; an unauthenticated public URL that links
directly to a view of a model using BIM Collaboration Format (BCF) would greatly aid communication
between stakeholders; and, as with Open Source software, there are untapped benefits to adopting
'copyleft' licenses that allow reuse of design work.

Auditing
With git as a version control system, all changes to a model can be traced precisely to author and date
committed, either by trusting the git-forge authentication system, or in extreme cases by adopting PGP or
S/MIME signing of commits.

Reference Implementations
Native IFC is not an onerous standard. From a software developers viewpoint, Native IFC is a rational
design and implementation choice. So we have identified independently developed tools written in
languages as diverse as C++/Python, Javascript and Perl that implement the standard without requiring
any further modification. i.e. these tools already implement Native IFC by default:

BlenderBIM, Python. Partially complete GUI IFC editing and authoring tool.

IfcOpenShell, C++/Python. A Mature library for manipulating IFC data.

IFC.js, Javascript. Work in progress library and web GUI.

File::IFC, Perl. Legacy stable library for reading and writing IFC/SPF data.

Limitations
Although there are fully functional Native IFC tools that cover much of the requirements of the AEC
industry, and an advantage of Native IFC is that multiple tools can be used simultaneously without conflict,
GUI tools like BlenderBIM and IFC.js are currently under rapid development. As a result, support for some
AEC related tasks is mature, partial or missing entirely.

IFC is a low-level language with extensive functionality to describe how buildings are constructed, what
they are made from, and how they work. IFC doesn't generally describe design intent or parametric

https://en.m.wikipedia.org/wiki/Forge_(software)
https://technical.buildingsmart.org/standards/bcf/
https://blenderbim.org
https://github.com/IfcOpenShell/IfcOpenShell
https://github.com/IFCjs
https://bitbucket.org/brunopostle/file-ifc
https://blenderbim.org
https://github.com/IFCjs

behaviour. The typical solution to this to attach additional metadata to elements and aggregates of
elements indicate how they may be recreated in a high-level process. These extensions to the standard
may be shared between applications or specific to a particular tool. Any Native IFC tool will preserve the
data in these extensions automatically, though without coordination it may become out of sync when
objects are edited.

BIM projects are limited by the difficulty of handling large unwieldy files. Federation (splitting projects up
into multiple files) will always be necessary to deal with these limitations. Survey scans and other received
information is used entirely for reference, so there is no advantage to including such data in a design
model, and considerable disadvantage. Federation can be supported either as multiple files in a single
repository, or using third-party repositories included as 'submodules', this way ownership may be
distributed in a variety of ways as necessary to suit specific project needs. Native IFC tools such as
BlenderBIM allow 'filtered' opening of IFC files, so a user may choose to only load a subset of the model
geometry in the GUI for editing, extending this subset as necessary when access is required for viewing
and editing. We envisage that this 'filtering', and further enhancements of it in combination with a federated
approach will be required to work with very large BIM projects.

Although git has no upper-limit on file size, in tests IFC files up to one GigaByte are readily manageable,
git-forge services often place lower caps on file sizes. Projects requiring very large IFC files would need to
self host a git forge, or make special arrangements with a third-party git forge.

By rewriting entity IDs, the three-way merge process 'squashes' commits, obscuring any fine-grain
distinction between them. So any staging process, with multiple levels of approval involving pull-requests,
will associate all changes with the most recent approver - these approvers will be responsible for including
relevant authorship information in commit messages.

Git forges have extensive issue tracking with easy to use discussion of pull requests, problems and
general queries. Although git repositories of data are easy to move and replicate, this forking behaviour
being of course fundamental to the branch and merge workflow, these discussions are not so
straightforward to move, potentially being lost at the end of a project. This may not be a problem for
particular projects, and currently git forges offer indefinite archiving, but to be certain that this
communication is not lost, a self-hosted git forge such as Gitea may be preferred.

Rejected Ideas
Often offered as a solution is storing IFC data for a project in a single online relational or graph database.
This would allow synchronous access, preventing conflict through short-term and local-scope locking
mechanisms. We are not proposing this as a solution as it introduces a single point of failure. A git based
workflow is distributed and robust against network failure, gracefully falling-back to simple distribution
methods such as email during network instability or server failure.

IFC offers an alternative persistence method for Rooted entities: Objects, Properties and Relationships.
These are given a Globally Unique Identifier (GUID) on creation and, in principle, this identifier will survive
an import/export process, though implementation is inconsistent as some of these concepts have no direct
equivalent in proprietary BIM models. Also most IFC entities don't have a GUID, they are anonymous, so
any three-way merge tool would need to traverse the model graph to re-associate these non-rooted
entities with their equivalents in the base version. This process would be slow and prone to error, relying
on heuristics. We find that the SPF ID preservation behaviour of Native IFC applications is a superior and
more robust means of tracking IFC entities.

Illustration of IFC three-way merging
The following sequences show the resolution of situations where the same entity has been edited in both
branches, merging of data manipulated by different applications, and scalability with large files.

Overlapping edits

https://en.m.wikipedia.org/wiki/Forge_(software)
https://gitea.io/

This is a Native IFC model of a simple building we are going to edit collaboratively. It is created in
Blenderbim, but it could be any IFC file.

This is the same model with some changes made in Blenderbim, a Native IFC editor. A window has
been moved, the wall material has changed, and some decorative finials have been added to the roof

storey.

In parallel, in another branch, some different changes are made to the original model. The roof storey
has been raised and the wall heights increased to match. At this point, we have two 'forks' of the design,

both manipulating the same building elements.

With a three-way merge, using the comon base of the two forked designs as a reference, we can
combine the forks. All window and wall changes are preserved and the finials are moved with the roof

storey.

Multiple applications

Here a Perl script written with File::IFC is used to randomise the colours of all materials, while in another
branch materials are renamed using Blenderbim. The significance here is that File::IFC and Blenderbim
are completely unrelated, written in different programming languages, however they are both Native IFC

applications so the three-way merge succeeds.

This is the commit history for this file showing branching and merges:

* commit f8ef006d69bfd80fc93568650a22977e1dd3a729 (HEAD -> main, origin/main)
|\ Merge: b99e3e9 92317c8
| | Author: Bruno Postle <bruno@postle.net>
| | Date: Tue Aug 30 22:47:16 2022 +0100
| |
| | Merge branch 'file-ifc'
| |
| * commit 92317c8610fdc771af3616e00f1531ce29fb1caf (file-ifc)
| | Author: Bruno Postle <bruno@postle.net>
| | Date: Tue Aug 30 22:42:50 2022 +0100
| |
| | randomise all the colours
| |
* | commit b99e3e9464094df50dfc087db2e13a7e3e13deb4
|/ Author: Bruno Postle <bruno@postle.net>
| Date: Tue Aug 30 22:46:19 2022 +0100
|
| rename materials
|
* commit 41be70aad2a936b77b9c0541ad1f4748dd498b0f
|\ Merge: 1a968af e1c40d6
| | Author: Bruno Postle <bruno@postle.net>
| | Date: Sat Jun 25 08:56:43 2022 +0100
| |
| | Merge branch 'demonstration'
| |
| * commit e1c40d64c938c12fbbce10c1c98b9ac638fe0740 (demonstration)

file:///home/bruno/src/ifcmerge/docs/:IFC
file:///home/bruno/src/ifcmerge/docs/:IFC

| | Author: Bruno Postle <bruno@postle.net>
| | Date: Sat Jun 25 08:53:41 2022 +0100
| |
| | Raise Storey 0 walls and storey 1 by 0.6m
| |
* | commit 1a968af1962854de81d6270a874297446e2b83fa
|/ Author: Bruno Postle <bruno@postle.net>
| Date: Sat Jun 25 08:54:56 2022 +0100
|
| move window, change wall colour, add roof finials
|
* commit 48a4e9e7ab10860c3899b8e6ef67f1da8dedc298
 Author: Bruno Postle <bruno@postle.net>
 Date: Sat Jun 25 08:52:04 2022 +0100

 A simple test model, four walls, four windows 2.7m FTF

Large models

This is an example large building to illustrate three-way merging of large Native IFC files. In this model
there are 175000 entities representing 24000 IFC objects.

This base IFC file is 11 MegaBytes, Native IFC files tend to be quite compact.

In a 'remote fork' of this base building, another building has been added alongside.

This additional building is using many existing IFC Types and Materials defined in the base model.

In a 'local fork', all the materials in the base model have been renamed and changed to blue.

This 'local' model is now conflicting with the 'remote' model. The 'remote' model has a new building, but
it is using materials that have been changed in the 'local' model.

ifcmerge is used to perform a three-way merge between the 'base', 'local' and 'remote' versions.
Material changes in the 'local' version and new objects in the 'remote' version are represented in the

'merged' result.

https://github.com/brunopostle/ifcmerge

The merge completed in 10 seconds. The resulting file is 14 MegaBytes with 235000 entities and 31800
IFC Objects.

About
This document is a work-in-progress, comments in the associated discussion page, or contributions
through pull-requests, are encouraged.

Copyright 2022, Bruno Postle with additional text by Dion Moult. The latest version of this document can
be found at https://github.com/brunopostle/ifcmerge/blob/main/docs/whitepaper.rst

https://github.com/brunopostle/ifcmerge/blob/main/docs/whitepaper.rst

	Abstract
	Motivation
	Rationale
	Specification
	Technical requirements
	General principles

	Description of an IFC three-way merge tool
	Backwards compatibility
	Security implications
	Confidentiality
	Intellectual property
	Auditing

	Reference Implementations
	Limitations
	Rejected Ideas
	Illustration of IFC three-way merging
	Overlapping edits
	Multiple applications
	Large models

	About

