This repository has been archived by the owner on Feb 12, 2024. It is now read-only.
forked from felipeaq/xr-cv19-diagnosis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
augmentation.py
222 lines (183 loc) · 5.27 KB
/
augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
"""This file holds algorithms for data augmentation of images."""
import numpy as np
from scipy.fftpack import fftn, ifftn, fftshift
def _normalize(img):
"""
Function to normalize images.
Parameters
----------
img : ndarray
Input image data.
Returns
-------
out : ndarray
Normalized image.
"""
img -= img.min()
img = img / img.max() * 255
return img
def luminance(img):
"""
Turn the input RGB image into a grayscale image.
Parameters
----------
img : ndarray
Input image data.
Returns
-------
out : ndarray
Grayscale image.
"""
N, M, _ = img.shape
out = np.empty(img.shape)
out = 0.299 * img[:,:,0] + 0.587 * img[:,:,1] + 0.114 * img[:,:,2]
return out.astype(np.uint8)
def apply_blur(f, sigma, k):
"""
Function to apply blur in images.
Parameters
----------
img : ndarray
Input image data.
sigma: float
Standard deviation of the gaussian filter.
k: int
Size of the gaussian filter.
Returns
-------
out : ndarray
Blurred image.
"""
def gaussian_filter(k, sigma):
"""
Return gaussian filter with the input `k` and `sigma`.
"""
arx = np.arange ((-k // 2) + 1.0, (k // 2) + 1.0 )
x, y = np.meshgrid(arx, arx)
f = np.exp(-(1 / 2) * (np.square(x) + np.square(y)) / np.square(sigma))
return f / np.sum(f) * 255
# Get gaussian filter
h = gaussian_filter(k=k, sigma=sigma)
# Compute the number of padding on one side
a = int(f.shape[0] // 2 - h.shape[0] // 2)
h_pad = np.pad(h, ((a,a), (a,a)), 'constant', constant_values=(0))
# Compute the Fourier transforms
F = fftn(f)
H = fftn(h_pad)
# Perform convolution
G = np.multiply(F, H)
# Apply inverse transform
# - we have to perform FFT shift before reconstructing
# the image in the space domain
g = fftshift(ifftn(G).real)
# Return the blurred image
return _normalize(g)
def adjust_contrast(img, factor):
"""
Function to adjust the contrast of the input image.
Parameters
----------
img : ndarray
Input image data.
factor: float
Input contrast factor.
Returns
-------
out : ndarray
Contrast adjusted version of the input image data.
"""
# Adjust contrast of the input image
factor = float(factor)
array = 128 + factor * img - factor * 128
out = np.clip(array, 0, 255)
# Return the contrasted image
return out.astype(np.uint8)
def adjust_sharpness(img, amount, sigma, k):
"""
Function to adjust the sharpness of the input image.
Parameters
----------
img : ndarray
Input image data.
amount: float
Adjustment intensity.
sigma: float
Standard deviation of the gaussinal filter.
k: int
Size of the gaussian filter.
Returns
-------
out : ndarray
Sharpness adjusted version of the input image data.
"""
# Blurs the input image
blur = _normalize(apply_blur(img, sigma, k))
# Sharps the blurred image
sharpened = img + amount * (img - blur)
# Normalize resulting image
out = _normalize(sharpened)
# Return the sharpened image
return out.astype(np.uint8)
def add_noise(img, mean, std):
"""
Function to insert noise in the input image. The noise insertion is carried
out with random generation based on Gaussian distribution.
Parameters
----------
img : ndarray
Input image data.
mean : float
Mean of random distribution.
std : float
Standart deviation of random distribution.
Returns
-------
out : ndarray
Noisy version of the input image data.
"""
# Generate a random noisy image
noise = np.random.normal(mean, std, img.shape)
# Insert the noise in the input image
out = img + noise
# Clip back to the original range
out = np.clip(out, img.min(), img.max())
# Return the noisy image
return out.astype(np.uint8)
def rotate(img, angle):
"""
Function to rotate the input image.
Parameters
----------
img : ndarray
Input image data.
angle : float
Rotation angle.
Returns
-------
out : ndarray
Rotated version of the input image data.
"""
# Initialize the output image
out = np.zeros(img.shape)
# Calculate the rotation matrix
theta = np.radians(angle)
c, s = np.cos(theta), np.sin(theta)
R = np.array([[c, s], [-s, c]])
# Calculate image center
center = ((img.shape[0]) // 2, (img.shape[1]) // 2)
# Perform image rotation
for x in range(img.shape[0]): # Row
for y in range(img.shape[1]): # Col
# Calculate the new position
(nx, ny) = np.dot(R, np.array([x - center[1], y - center[0]]))
# Add offset
nx += center[0]
ny += center[1]
# Convert the new position to integer
(nx, ny) = (int(nx), int(ny))
# Ignore points out of bounds
if nx >= 0 and ny >= 0 and nx < img.shape[0] and ny < img.shape[1]:
# Set the pixel to its new position
out[x, y] = img[nx, ny]
# Return the rotated image
return out.astype(np.uint8)