-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmargin_based_linear_relationship.m
66 lines (66 loc) · 3.22 KB
/
margin_based_linear_relationship.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
clear;clc;
%% root folder names
dot = '/Users/brandomiranda/home_simulation_research/overparametrized_experiments/';
path_all_expts = fullfile(dot,'pytorch_experiments/test_runs_flatness5_ProperOriginalExpt');
%% experiment files names
list_names = [];
name = "Large_Inits_HIST_0.001loss_vs_gen_errors_norm_l2_division_constant1_data_set_mnist.mat";list_names=[list_names, name];
name = "Large_Inits_HIST_0.0025loss_vs_gen_errors_norm_l2_division_constant1_data_set_mnist.mat";list_names=[list_names, name];
name = "Large_Inits_HIST_0.01loss_vs_gen_errors_norm_l2_division_constant1_data_set_mnist.mat";list_names=[list_names, name];
name = "Large_Inits_HIST_0.075loss_vs_gen_errors_norm_l2_division_constant1_data_set_mnist.mat";list_names=[list_names, name];
name = "Large_Inits_HIST_0.1loss_vs_gen_errors_norm_l2_division_constant1_data_set_mnist.mat";list_names=[list_names, name];
name = "Large_Inits_HIST_0.125loss_vs_gen_errors_norm_l2_division_constant1_data_set_mnist.mat";list_names=[list_names, name];
%name = "";list_names=[list_names, name];
%% get K_alphas
gamma = 0.01;
[K_gammas,list_train_all_losses_normalized,stds] = extract_all_margin_based_values(path_all_expts,list_names,gamma);
%% plot scatter of K_gamma vs normalized train loss
fig1 = figure;
str_K_gamma = ['K_{' num2str(gamma) '}'];
scatter(list_train_all_losses_normalized,K_gammas)
%lscatter(list_train_all_losses_normalized,K_gammas,stds)
xlabel('normalized train loss');
ylabel(str_K_gamma);
title([str_K_gamma ' vs normalized train loss']);
%%
name = ['K' strrep(num2str(gamma),'.','p')]
saveas(fig1,name);
saveas(fig1,name,'pdf');
%%
function [K_gammas,list_train_all_losses_normalized,stds] = extract_all_margin_based_values(path_all_expts,list_names,gamma)
stds = [];
K_gammas = [];
list_train_all_losses_normalized = [];
for name = list_names
path_to_folder_expts = fullfile(path_all_expts,name);
load(path_to_folder_expts);
%% extra all data from experiments
train_losses = hist_all_train_norm;
std = std_inits_all;
[K_gamma,max_values,second_max_values] = get_margin_based_stats(train_losses,gamma);
%%
stds = [stds std];
K_gammas = [K_gammas K_gamma];
list_train_all_losses_normalized = [list_train_all_losses_normalized train_all_losses_normalized];
end
end
function [K_gamma,max_values,second_max_values] = get_margin_based_stats(train_losses,gamma)
[nb_rows,nb_classes] = size(train_losses);
max_values = zeros(nb_rows,1);
second_max_values = zeros(nb_rows,1);
indicies = 1:nb_classes;
for row=1:nb_rows
%% get largest
confidence_f_x = train_losses(row,:);
[models_largest_confidence, max_index] = max(confidence_f_x);
max_values(row) = models_largest_confidence;
%% get second largest
selected = ~(max_index == indicies); % logical index array that selects the arrays such that only the ones without the max are left out, since it will only match once, at the max index location the rest will be 0, then negating leaves the max index out
confidence_f_x = train_losses(row,selected);
models_2nd_largest_confidence = max(confidence_f_x);
second_max_values(row) = models_2nd_largest_confidence;
end
%% compute max_y f_y - max_{c!=y} f_c
K_gammas = max_values - second_max_values < gamma;
K_gamma = (1/nb_rows)*sum(K_gammas);
end