forked from eclarson/DataMiningNotebooks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatcompare.py
34 lines (26 loc) · 858 Bytes
/
statcompare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
clf1 = Pipeline(
[('PCA',PCA(n_components=100,svd_solver='randomized')),
('CLF',GaussianNB())]
)
clf2 = Pipeline(
[('PCA',PCA(n_components=500,svd_solver='randomized')),
('CLF',GaussianNB())]
)
from sklearn.model_selection import cross_val_score
# is clf1 better or worse than clf2?
cv=StratifiedKFold(n_splits=10)
acc1 = cross_val_score(clf1, X, y=y, cv=cv)
acc2 = cross_val_score(clf2, X, y=y, cv=cv)
#=================================
t = 2.26 / np.sqrt(10)
e = (1-acc1)-(1-acc2)
# std1 = np.std(acc1)
# std2 = np.std(acc2)
stdtot = np.std(e)
dbar = np.mean(e)
print ('Range of:', dbar-t*stdtot,dbar+t*stdtot )
print (np.mean(acc1), np.mean(acc2))
#===============================
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
plt.imshow(cm_normalized,cmap=plt.get_cmap('Reds'),aspect='auto')
plt.grid(False)