-
Notifications
You must be signed in to change notification settings - Fork 2
/
splice_site_divergence_check.py
463 lines (364 loc) · 15.3 KB
/
splice_site_divergence_check.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
### Boas Pucker ###
### bpucker@cebitec.uni-bielefeld.de ###
### v0.1 ###
__usage__ = """
python splice_site_divergence_check.py
--data_dir <FULL_PATH_TO_DATA_FROM_NCBI>
--output_dir <FULL_PATH_TO_OUTPUT_DIRECTORY>
--species_file <FULL_PATH_TO_FILE_WITH_SPECIES_ORDER>
"""
import glob, re, os, sys
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import numpy as np
from operator import itemgetter
from scipy import stats
from math import log as ln
from scipy import stats
# --- end of imports --- #
def load_sequences( multiple_fasta_file ):
"""! @brief load candidate gene IDs from file """
sequences = {}
with open( multiple_fasta_file ) as f:
header = f.readline()[1:].strip().split(' ')[0]
seq = ""
line = f.readline()
while line:
if line[0] == '>':
sequences.update( { header: seq } )
header = line.strip()[1:].split(' ')[0]
seq = ""
else:
seq += line.strip()
line = f.readline()
sequences.update( { header: seq } )
return sequences
def load_results( filename ):
"""! @brief load ncss genes and ncss distribution from doc file """
ncss_genes = []
ncss_distribution = {}
rnas = []
status = False
with open( filename, "r" ) as f:
line = f.readline()
while line:
parts = line.strip().split('\t')
if len( parts ) >= 3:
try:
rnas.append( re.findall( "rna\d+", parts[0] )[0] )
except IndexError:
print line
elif '..' in line:
ncss_distribution.update( { parts[0]: int( parts[1] ) } )
elif '#' in line:
status = True
elif status:
ncss_genes.append( line.strip() )
line = f.readline()
return ncss_genes, ncss_distribution, rnas
def combine_all_results( results, output_file, species ):
"""! @brief combine all results in one file """
# --- get all possible splice site combinations --- #
order = []
all_splice_sites = {}
for one in [ "A", "C", "G", "T" ]:
for two in [ "A", "C", "G", "T" ]:
for three in [ "A", "C", "G", "T" ]:
for four in [ "A", "C", "G", "T" ]:
all_splice_sites.update( { one+two+"..."+three+four: [] } )
order.append( one+two+"..."+three+four )
# --- combine all data --- #
#species = sorted( results.keys() )
for spec in species:
for splice_site in all_splice_sites.keys():
try:
all_splice_sites[ splice_site ].append( results[ spec ][ splice_site ] )
except KeyError:
all_splice_sites[ splice_site ].append( 0 )
# --- writing output --- #
with open( output_file, "w" ) as out:
out.write( "splice_site\t" + "\t".join( species ) + '\n' )
for splice_site in sorted( all_splice_sites.keys() ):
out.write( "\t".join( [ splice_site ] + map( str, all_splice_sites[ splice_site ] ) ) + '\n' )
return all_splice_sites, order
def find_outliers( all_splice_sites, species, outlier_file ):
"""! @brief identify species with uncommon splice site distributions """
outliers = []
for splice_site in all_splice_sites.keys():
values = all_splice_sites[ splice_site ]
median = np.median( values )
for idx, val in enumerate( values ):
if val > 3*median and median > 0:
outliers.append( { 'splice_site': splice_site, 'spec': species[ idx ], 'val': val } )
elif val < 0.3*median and splice_site in [ "GT...AG", "GC...AG" ]:
outliers.append( { 'splice_site': splice_site, 'spec': species[ idx ], 'val': val } )
with open( outlier_file, "w" ) as out:
for outlier in sorted( outliers, key=itemgetter('splice_site', 'val', 'spec') ):
out.write( "\t".join( map( str, [ outlier['splice_site'], outlier['spec'], outlier['val'] ] ) ) + '\n' )
def construct_boxplot( all_splice_sites, order, fig_file ):
"""! @brief construct box plot for all splice site combinations """
values = []
labels = []
for idx, key in enumerate( order ):
if key not in [ "GT...AG", "GC...AG" ]: #"GT...AG", "GC...AG"
values.append( all_splice_sites[ key ] )
labels.append( key )
fig, ax = plt.subplots( figsize=(30,5) )
ax.boxplot( values )
ax.set_ylabel( "counts" )
ax.set_xticklabels( labels, rotation=90 )
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
plt.subplots_adjust( left=0.02, right=0.99, top=1.0, bottom=0.2 )
fig.savefig( fig_file, dpi=600 )
plt.close("all")
def calc_cor( all_splice_sites, a, b ):
"""! @brief calculate correlation of ncss pattern between species A and species B """
spec_a_values = []
spec_b_values = []
for key in all_splice_sites.keys():
spec_a_values.append( all_splice_sites[ key ][ a ] )
spec_b_values.append( all_splice_sites[ key ][ b ] )
r, p = stats.spearmanr( spec_a_values, spec_b_values )
return r,p
def correlate_patterns_between_species( all_splice_sites, species, spec_cor_file ):
"""! @brief compare ncss distribution between species """
# --- load and calculate data --- #
sorted_spec = sorted( species )
cor_results = []
p_value_results = []
for spec1 in species:
tmp_cor = []
tmp_p = []
a = sorted_spec.index( spec1 )
for spec2 in species:
b = sorted_spec.index( spec2 )
cor, p_value = calc_cor( all_splice_sites, a, b )
tmp_cor.append( cor )
tmp_p.append( p_value )
cor_results.append( tmp_cor )
p_value_results.append( tmp_p )
# --- write data into output file --- #
species_labels = []
with open( spec_cor_file, "w" ) as out:
out.write( "\t".join( [ "x" ] + species ) + '\n' )
for idx, spec in enumerate( species ):
out.write( "\t".join( [ spec ] + map( str, cor_results[ idx ] ) ) + '\n' )
species_labels.append( spec.replace( "_", " " ) )
# --- construct correlation plot --- #
fig_file = spec_cor_file.replace(".txt", ".png")
fig, ax = plt.subplots( )
x_values = []
y_values = []
correlation = []
for y, values in enumerate( cor_results ):
for x, value in enumerate( values ):
if value == "-":
pass
else:
x_values.append( x )
y_values.append( y )
correlation.append( value )
ax.scatter( x_values, y_values, c=correlation, s=5, marker="s", cmap="bwr", zorder=1 )
for tick in ax.xaxis.get_major_ticks():
tick.label.set_fontsize(3)
for tick in ax.yaxis.get_major_ticks():
tick.label.set_fontsize(3)
ax.set_xticklabels( [ "" ] + species_labels, rotation=90, fontsize=2 )
ax.set_yticklabels( [ "" ] + species_labels, fontsize=2 )
ax.set_xlim( -1, len( cor_results ) )
ax.set_ylim( -1, len( cor_results ) )
start, end = ax.get_xlim()
ax.xaxis.set_ticks( np.arange( start, end, 1 ) )
start, end = ax.get_ylim()
ax.yaxis.set_ticks( np.arange( start, end, 1 ) )
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.set_frame_on(False)
plt.subplots_adjust( left=0.1, right=0.995, top=0.995, bottom=0.15 )
fig.savefig( fig_file, dpi=900 )
plt.close("all")
def splice_sites_per_species( all_splice_sites, species, total_per_spec_file, genes_per_spec ):
"""! @brief visualize total number of splice sites per species """
sorted_specs = sorted( species )
total_ncss = []
total_gene_numbers = []
total_css = []
ratios = []
css_per_spec = {}
ncss_per_spec = {}
for spec in species:
total = []
idx = sorted_specs.index( spec )
for key in all_splice_sites.keys():
if key not in [ "GT...AG", "GC...AG", "AT...AC" ]:
total.append( all_splice_sites[ key ][ idx ] )
total_ncss.append( sum( total ) )
total_gene_numbers.append( genes_per_spec[ spec ] )
css = sum( total ) + all_splice_sites[ "GT...AG" ][ idx ] + all_splice_sites[ "GC...AG" ][ idx ] + all_splice_sites[ "AT...AC" ][ idx ]
total_css.append( css )
try:
ratios.append( sum( total ) / float( css ) )
except ZeroDivisionError:
ratios.append( 0 )
print spec + ": " + str( sum( total ) ) + " (ncss) - " + str( css ) + "(all)"
css_per_spec.update( { spec: css } )
ncss_per_spec.update( { spec: sum( total ) } )
fig, ax = plt.subplots( figsize=(20,5) )
ax2 = ax.twinx()
ax3 = ax.twinx()
ax4 = ax.twinx()
ax.plot( np.arange( 0, len( sorted_specs ), 1 ), total_ncss, color="red", label="total_ncss", linestyle=":" )
#ax2.plot( np.arange( 0, len( sorted_specs ), 1 ), total_css, color="blue", label="total_css", linestyle=":" )
ax3.plot( np.arange( 0, len( sorted_specs ), 1 ), ratios, color="green", label="splice_site_ratio", linestyle=":" )
ax4.plot( np.arange( 0, len( sorted_specs ), 1 ), total_gene_numbers, color="black", label="total_genes", linestyle=":" )
print "ncss per species ranges from " + str( min( total_ncss ) ) + " to " + str( max( total_ncss ) )
print "total number of splice sites ranges from " + str( min( total_css ) ) + " to " + str( max( total_css ) )
for tick in ax.xaxis.get_major_ticks():
tick.label.set_fontsize(10)
for tick in ax.yaxis.get_major_ticks():
tick.label.set_fontsize(5)
ax.set_xlim( 0, len( species ) )
start, end = ax.get_xlim()
ax.xaxis.set_ticks( np.arange( start, end, 1 ) )
ax.set_xticklabels( species, rotation=90 )
ax.set_ylabel( "number of non-canonical splice sites" )
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.set_frame_on(False)
my_handle = [ mpatches.Patch(color='red', label='total_ncss'),
#mpatches.Patch(color='blue', label='total_css'),
mpatches.Patch(color='green', label='ncss / css'),
mpatches.Patch(color='black', label='total_genes')
]
ax.legend( handles=my_handle, bbox_to_anchor=(0.5, 0.9), fontsize=10 )
plt.subplots_adjust( left=0.03, right=0.98, top=0.99, bottom=0.38 )
fig.savefig( total_per_spec_file, dpi=300 )
plt.close('all')
return css_per_spec, ncss_per_spec
def get_genome_sizes( input_dir ):
"""! @brief calculates the genome size per species based on provided assembly file """
genome_sizes = {}
assembly_files = glob.glob( input_dir + "*.fna" )
for filename in assembly_files:
ID = filename.split('/')[-1].split('.')[0]
seqs = "".join( load_sequences( filename ).values() )
genome_sizes.update( { ID: len( seqs ) } )
return genome_sizes
def genome_size_splice_site_cor( genome_sizes, css, ncss, fig_file ):
"""! @brief plots the correlation of css and ncss with the genome size """
fig, ax = plt.subplots()
x_values = [] #genome size
y_values_css = []
y_values_ncss = []
labels = []
for spec in genome_sizes.keys():
x_values.append( genome_sizes[ spec ] / 1000000.0 )
y_values_css.append( css[ spec ] )
y_values_ncss.append( ncss[ spec ] )
labels.append( spec )
ax2 = ax.twinx()
ax.scatter( x_values, y_values_css, color="green", label="css" )
ax2.scatter( x_values, y_values_ncss, color="red", label="ncss" )
ax.set_xlabel( "genome size [Mbp]" )
ax.set_ylabel( "css" )
ax2.set_ylabel( "ncss" )
c1, p1 = stats.spearmanr( x_values, y_values_css )
c2, p2 = stats.spearmanr( x_values, y_values_ncss )
print "Spearman correlation css: " + str( c1 ) + " (p-value=" + str( p1 ) + ")"
print "Spearman correlation ncss: " + str( c2 ) + " (p-value=" + str( p2 ) + ")"
ax.set_title( "css: r="+str( round( c1, 4) )+", p="+str( p1 ) + "; ncss: r="+str( round( c2, 4 ) )[:4] +", p="+str( p2 ), fontsize=5 )
ax.legend( handles=[ mpatches.Patch(color='green', label='css'), mpatches.Patch(color='red', label='ncss') ], bbox_to_anchor=( 0.9, 0.9 ), fontsize=10 )
fig.savefig( fig_file, dpi=300 )
def correlate_with_divergence( all_splice_sites, cor_fig_file ):
"""! @brief correlate splice sites with distance to GT-AG canonical splice site """
divergence = []
counts = []
labels = []
for key in all_splice_sites.keys():
if key not in [ "GT...AG" ]: #, "GC...AG"
dist = 0
for idx, nt in enumerate( "GT...AG" ):
if nt != key[ idx ]:
dist += 1
divergence.append( dist )
counts.append( np.mean( map( float, all_splice_sites[ key ] ) ) )
labels.append( key )
r, p = stats.spearmanr( divergence, counts )
fig, ax = plt.subplots()
ax.scatter( divergence, counts, color="green", s=10 )
ax.set_yscale('log')
ax.set_xlabel( "divergence from canonical splice site GT...AG" )
ax.set_ylabel( "average number of observed splice sites across species" )
ax.set_title( "r="+str( round( r, 4 ) )+", p-value="+str( p ) )
plt.subplots_adjust( left=0.1, right=0.95, top=0.8, bottom=0.1 )
fig.savefig( cor_fig_file, dpi=600 )
plt.close("all")
def ncss_total_splice_site_correlation( css_per_spec, ncss_per_spec, total_vs_ncss_fig_file ):
"""! @brief check correlation between total number of splice sites and ncss """
fig, ax = plt.subplots()
x_values = [] #canonical splice sites
y_values = [] #non-canonical splice sites
for spec in css_per_spec.keys():
x_values.append( css_per_spec[ spec ])
y_values.append( ncss_per_spec[ spec ] )
ax.scatter( x_values, y_values, color="green" )
ax.set_xlabel( "number of total splice sites" )
ax.set_ylabel( "number of non-canonical splice sites" )
c1, p1 = stats.spearmanr( x_values, y_values )
print "Spearman correlation between total splice sites and ncss: " + str( c1 ) + " (p-value=" + str( p1 ) + ")"
ax.set_title( "total splice sites and ncss correlation: r="+str(c1)+", p="+str( p1 ), fontsize=5 )
ax.legend( bbox_to_anchor=( 0.9, 0.9 ), fontsize=5 )
fig.savefig( total_vs_ncss_fig_file, dpi=600 )
def main( arguments ):
"""! @brief runs all analyses """
input_dir = arguments[ arguments.index('--data_dir')+1 ]
output_dir = arguments[ arguments.index('--output_dir')+1 ]
spec_order_file = arguments[ arguments.index('--species_file')+1 ]
if input_dir[-1] != '/':
input_dir += "/"
if output_dir[-1] != "/":
output_dir += "/"
if not os.path.exists( output_dir ):
os.makedirs( output_dir )
output_file = output_dir + "all_splite_sites.txt"
combined_result_file = output_dir + "combined_div.txt"
box_fig_file = output_dir + "boxplot.png"
spec_cor_file = output_dir + "spec_cor.txt"
total_per_spec_file = output_dir + "total_per_spec.png"
genome_size_cor_file = output_dir + "genome_size_cor.png"
outlier_file = output_dir + "outliers2.txt"
divergence_cor_fig_file = output_dir + "divergence_cor.png"
total_vs_ncss_fig_file = output_dir + "total_splice_sites_vs_ncss.png"
# ---- get species order --- #
with open( spec_order_file, "r" ) as f:
species = f.read().strip().replace(' ', '_').split('\n')
# --- combine data --- #
result_files = glob.glob( input_dir + "*.txt" )
results = {}
genes_per_spec = {}
for spec in species:
filename = input_dir + spec + ".txt"
ncss_genes, ncss_distribution, rnas = load_results( filename )
results.update( { spec: ncss_distribution} )
genes_per_spec.update( { spec: len( list( set( rnas ) ) ) } )
all_splice_sites, order = combine_all_results( results, combined_result_file, species )
# --- identify interesting outliers --- #
find_outliers( all_splice_sites, species, outlier_file )
# --- check correlation with divergence of splice sites --- #
correlate_with_divergence( all_splice_sites, divergence_cor_fig_file )
# --- check correlation with genome size --- #
css_per_spec, ncss_per_spec = splice_sites_per_species( all_splice_sites, species, total_per_spec_file, genes_per_spec )
genome_sizes = get_genome_sizes( input_dir )
genome_size_splice_site_cor( genome_sizes, css_per_spec, ncss_per_spec, genome_size_cor_file )
# --- correlate ncss with total number of splice sites --- #
ncss_total_splice_site_correlation( css_per_spec, ncss_per_spec, total_vs_ncss_fig_file )
# --- compare patterns between species --- #
correlate_patterns_between_species( all_splice_sites, species, spec_cor_file )
# --- construct nice figures --- #
construct_boxplot( all_splice_sites, order, box_fig_file )
if __name__ == '__main__':
if '--data_dir' in sys.argv and '--output_dir' in sys.argv and '--species_file' in sys.argv:
main( sys.argv )
else:
sys.exit( __usage__ )