-
Notifications
You must be signed in to change notification settings - Fork 2
/
analyze_supported_splice_sites.py
290 lines (229 loc) · 10.4 KB
/
analyze_supported_splice_sites.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
### Boas Pucker ###
### bpucker@cebitec.uni-bielefeld.de ###
### v0.1 ###
__usage__ = """
python analyze_supported_splice_sites.py
--data <FULL_PATH_TO_DATA_FOLDER>
--sssd <FULL_PATH_TO_RNA_SEQ_SUPPORT_FILES> #path to all species (not one particular)
--cov_rep <FULL_PATH_TO_RNA_SEQ_COVERAGE_REPORT_FILE> #names have to be the same as in NCBI folder; RNA-Seq amount
--out <FULL_PATH_TO_OUTPUT_FOLDER>
"""
import glob, re, sys, os
import matplotlib.pyplot as plt
from scipy import stats
import numpy as np
import warnings
# --- end of imports --- #
def load_splice_site_counts( filename ):
"""! @brief load counts for all splice sites """
gtag, gcag, atac, others = 0, 0, 0, 0
with open( filename, "r" ) as f:
line = f.readline()
while line:
if 'GT..AG' in line:
gtag = int( re.findall( "\d+", line )[0] )
elif 'GC..AG' in line:
gcag = int( re.findall( "\d+", line )[0] )
elif 'AT..AC' in line:
atac = int( re.findall( "\d+", line )[0] )
elif not 'N' in line:
others += int( re.findall( "\d+", line )[0] )
line = f.readline()
return gtag, gcag, atac, others
def generate_brief_overview( input_dir, output_file ):
"""! @brief generate overview based on top (non-canonical) splice sites """
overview_files = glob.glob( input_dir + "*/*_overview.txt" )
print(overview_files)
specs = []
gtags = []
gcags = []
atacs = []
all_others = []
for filename in sorted( overview_files ):
spec = filename.split('/')[-2]
gtag, gcag, atac, others = load_splice_site_counts( filename )
specs.append( spec )
gtags.append( gtag )
gcags.append( gcag )
atacs.append( atac )
all_others.append( others )
with open( output_file, "w" ) as out:
out.write( "splice_site\t" + "\t".join( specs ) + '\n' )
out.write( "GT-AG\t" + "\t".join( map( str, gtags ) ) + '\n' )
out.write( "GC-AG\t" + "\t".join( map( str, gcags ) ) + '\n' )
out.write( "AT-AC\t" + "\t".join( map( str, atacs ) ) + '\n' )
out.write( "others\t" + "\t".join( map( str, all_others ) ) + '\n' )
def correlate_support_and_coverage( data_dir, splice_site_support_dir, cov_report_file, output_dir ):
"""! @brief correlate support of splice sites with available RNA-Seq read coverage """
# --- load available RNA-Seq read coverage from file --- #
cov_per_spec = {}
with open( cov_report_file, "r" ) as f:
line = f.readline()
while line:
parts = line.strip().split('\t')
cov_per_spec.update( { parts[0].lower(): float( parts[-1] ) } )
line = f.readline()
# --- get total number of annotated splice sites per species --- #
total_splice_sites_per_spec = {}
total_ncss_per_spec = {}
total_splice_site_files = glob.glob( data_dir + "*.txt" )
for filename in total_splice_site_files:
counter = 0
ncss_counter = 0
ID = filename.split('/')[-1].split('.')[0].lower()
with open( filename, "r" ) as f:
line = f.readline()
while line:
parts = line.strip().split('\t')
if len( parts ) > 3:
counter += 1
if parts[3] == "ncss":
ncss_counter += 1
line = f.readline()
total_splice_sites_per_spec.update( { ID: counter } )
total_ncss_per_spec.update( { ID: ncss_counter } )
# --- get total number of supported splice sites per species --- #
supported_splice_sites_per_spec = {}
supported_ncss_per_spec = {}
supported_splice_site_files = glob.glob( splice_site_support_dir + "*/supported_ncss.txt" )
#name should be changed to "supported_splice_sites.txt"
for filename in supported_splice_site_files:
counter = 0
ncss_counter = 0
ID = filename.split('/')[-2].lower()
with open( filename, "r" ) as f:
line = f.readline()
while line:
parts = line.strip().split('\t')
if len( parts ) == 3:
if ( ( parts[1] == "GT" ) + ( parts[2] == "AG" ) ) < 2:
ncss_counter += 1
counter += 1
line = f.readline()
supported_splice_sites_per_spec.update( { ID: counter } )
supported_ncss_per_spec.update( { ID: ncss_counter } )
# --- constructing general correlation figure --- #
fig_file = output_dir + "RNA_seq_cov_splice_site_support_correlation.png"
fig, ax = plt.subplots()
x_values = [] #canonical splice sites
y_values = [] #non-canonical splice sites
y_values2 = [] #percentage
for spec in cov_per_spec.keys():
try:
y_values.append( supported_splice_sites_per_spec[ spec ] )
percent = (100.0*supported_splice_sites_per_spec[ spec ] ) / total_splice_sites_per_spec[ spec ]
print spec + "\t" + str( percent ) + "%"
y_values2.append( percent )
x_values.append( cov_per_spec[ spec ]/ 1000000000.0 )
except KeyError:
print spec
ax.scatter( x_values, y_values, color="green", label="counts" )
ax.scatter( [], [], color="blue", label="percent" )
ax2 = ax.twinx()
ax2.scatter( x_values, y_values2, color="blue", label="percent" )
ax.set_xlabel( "total number of sequenced nt in RNA-Seq data [billion]" )
ax.set_ylabel( "number of supported splice sites" )
ax2.set_ylabel( "percent of supported splice sites" )
c1, p1 = stats.spearmanr( x_values, y_values )
print "Spearman correlation between number supported splice sites and nucleotides sequenced: " + str( c1 ) + " (p-value=" + str( p1 ) + ")"
ax.set_title( "RNA-Seq coverage and splice site support: r="+str(c1)+", p="+str( p1 ), fontsize=5 )
ax.legend( bbox_to_anchor=( 0.9, 0.9 ), fontsize=5 )
plt.subplots_adjust( left=0.15, top=0.95, right=0.9, bottom=0.12 )
fig.savefig( fig_file, dpi=300 )
# --- construct ncss correlation figure --- #
fig_file = output_dir + "RNA_seq_cov_ncss_support_correlation.png"
fig, ax = plt.subplots()
x_values = [] #canonical splice sites
y_values = [] #non-canonical splice sites
y_values2 = [] #percentage
for spec in cov_per_spec.keys():
try:
try:
percent = (100.0*supported_ncss_per_spec[ spec ] ) / total_ncss_per_spec[ spec ]
y_values.append( supported_ncss_per_spec[ spec ] )
print spec + "\t" + str( percent ) + "%"
y_values2.append( percent )
x_values.append( cov_per_spec[ spec ] / 1000000000.0 )
except ZeroDivisionError:
print spec + " ZeroDivisionError"
except KeyError:
print spec + " KeyError"
ax.scatter( x_values, y_values, color="green", label="counts" )
ax.scatter( [], [], color="blue", label="percent" )
ax2 = ax.twinx()
ax2.scatter( x_values, y_values2, color="blue", label="percent" )
ax.set_xlabel( "total number of sequenced nt in RNA-Seq data [billion]" )
ax.set_ylabel( "number of supported non-canonical splice sites" )
ax2.set_ylabel( "percent of supported non-canonical splice sites" )
c1, p1 = stats.spearmanr( x_values, y_values )
print "Spearman correlation between number supported ncss and nucleotides sequenced: " + str( c1 ) + " (p-value=" + str( p1 ) + ")"
ax.set_title( "RNA-Seq coverage and splice site support: r="+str(c1)+", p="+str( p1 ), fontsize=5 )
ax.legend( bbox_to_anchor=( 0.9, 0.9 ), fontsize=5 )
plt.subplots_adjust( left=0.15, top=0.95, right=0.9, bottom=0.12 )
fig.savefig( fig_file, dpi=300 )
def construct_overview_figure( overview_file, overview_figure ):
"""! @brief construct a figure to illustrate the ratio between differen splice site combinations """
with open( overview_file, "r" ) as f:
specs = f.readline().strip().split('\t')[1:]
gt_ag = map( int, f.readline().strip().split('\t')[1:] )
gc_ag = map( int, f.readline().strip().split('\t')[1:] )
at_ac = map( int, f.readline().strip().split('\t')[1:] )
all_others = map( int, f.readline().strip().split('\t')[1:] )
gtag = []
gcag = []
atac = []
others = []
for idx, each in enumerate( specs ):
gtag.append( float( gt_ag[ idx ] ) / ( gt_ag[ idx ] + gc_ag[ idx ] + at_ac[ idx ] +all_others[ idx ] ) )
gcag.append( float( gc_ag[ idx ] ) / ( gt_ag[ idx ] + gc_ag[ idx ] + at_ac[ idx ] +all_others[ idx ] ) )
atac.append( float( at_ac[ idx ] ) / ( gt_ag[ idx ] + gc_ag[ idx ] + at_ac[ idx ] +all_others[ idx ] ) )
others.append( float( all_others[ idx ] ) / ( gt_ag[ idx ] + gc_ag[ idx ] + at_ac[ idx ] +all_others[ idx ] ) )
fig, ax = plt.subplots()
ax.boxplot( [ gtag, gcag, atac, others ] )
ax.set_yscale('log')
ax.set_xticklabels( [ "GT-AG", "GC-AG", "AT-AC", "others" ] )
ax.set_ylabel( "proportion of total splice sites" )
fig.savefig( overview_figure, dpi=300 )
plt.close('all')
print "GT-AG (median): " + str( 100*np.median( gtag ) )[:5] + "%"
print "GC-AG (median): " + str( 100*np.median( gcag ) )[:5] + "%"
print "AT-AC (median): " + str( 100*np.median( atac ) )[:5] + "%"
print "others (median): " + str( 100*np.median( others ) )[:5] + "%"
def construct_combined_file_with_splice_site_support( splice_site_support_dir, output_dir ):
"""! @brief combine all files with splice site support values """
output_file = output_dir + "all_supported_splice_sites.txt"
input_files = sorted( glob.glob( splice_site_support_dir + "*/splice_site_coverage_check.txt" ) )
with open( output_file, "w" ) as out:
out.write( "Species\tGeneID\tExon3prime\tIntron5prime\tIntron3prime\tExon5prime\t5prime_splice_site\t3prime_splice_site\n" )
for filename in input_files:
ID = filename.split('/')[-2]
with open( filename, "r" ) as f:
f.readline() #header
line = f.readline()
while line:
out.write( ID + '\t' + line )
line = f.readline()
def main( arguments ):
"""! @brief assess correlation between RNA-Seq coverage and supported splice sites """
data_dir = arguments[ arguments.index( '--data' )+1 ] #data folder with all NCBI files after processing
splice_site_support_dir = arguments[ arguments.index( '--sssd' )+1 ] #RNA-Seq ncss support folder
cov_report_file = arguments[ arguments.index( '--cov_rep' )+1 ] #RNA-seq coverage overview file
output_dir = arguments[ arguments.index( '--out' )+1 ] #output folder
if output_dir[-1] != '/':
output_dir += "/"
if not os.path.exists( output_dir ):
os.makedirs( output_dir )
overview_file = output_dir + "overview.txt"
generate_brief_overview( splice_site_support_dir, overview_file )
overview_figure = output_dir + "overview.png"
construct_overview_figure( overview_file, overview_figure )
#analyze percentage of supported splice sites and correlate it with coverage
correlate_support_and_coverage( data_dir, splice_site_support_dir, cov_report_file, output_dir )
#construct combined splice site coverage file
construct_combined_file_with_splice_site_support( splice_site_support_dir, output_dir )
print "all done!"
if __name__ == "__main__":
if '--data' in sys.argv and '--sssd' in sys.argv and '--cov_rep' in sys.argv and '--out' in sys.argv:
main( sys.argv )
else:
sys.exit( __usage__ )