-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
271 lines (192 loc) · 6.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# This import registers the 3D projection, but is otherwise unused.
from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np
import math
import seaborn as sns
sns.set()
# -------------------- Helper Functions are First -------------------- #
def M(theta):
"""
Return the angle phi = theta mod (2 pi) such that -pi <= theta < pi.
"""
theta = theta % (2 * math.pi)
if theta < -math.pi:
return theta + 2 * math.pi
if theta >= math.pi:
return theta - 2 * math.pi
return theta
def polar(x, y):
"""
Return the polar coordinates (r, theta) of the point (x, y).
"""
r = np.hypot(x, y) # math.sqrt(x * x + y * y)
theta = np.arctan2(y, x) # math.atan2(y, x)
return r, theta
def change_of_basis(p1, p2):
"""
Given p1 = (x1, y1, theta1) and p2 = (x2, y2, theta2) represented in a
coordinate system with origin (0, 0) and rotation 0 (in rad), return
the position and rotation of p2 in the coordinate system which origin
(x1, y1) and rotation theta1.
"""
theta1 = p1[2]
dx = p2[0] - p1[0]
dy = p2[1] - p1[1]
# new_x = dx * math.cos(theta1) + dy * math.sin(theta1)
# new_y = -dx * math.sin(theta1) + dy * math.cos(theta1)
xb, yb = rotate_wb(dx, dy, theta1)
dtheta = p2[2] - p1[2]
return xb, yb, dtheta
def sign(x):
return 1 if x >= 0 else -1
def rotate_bw(xb, yb, psi):
s = np.sin(psi)
c = np.cos(psi)
xw = xb * c - yb * s
yw = xb * s + yb * c
return xw, yw
def rotate_wb(xw, yw, psi):
s = np.sin(psi)
c = np.cos(psi)
xb = xw * c + yw * s
yb = -xw * s + yw * c
return xb, yb
def plot_arrows(q0, q1):
x0, y0, yaw0 = q0
x1, y1, yaw1 = q1
length = 0.6
width = 0.4
plt.arrow(x0, y0, length * np.cos(yaw0), length * np.sin(yaw0), head_width=width, head_length=width)
plt.plot(x0, y0, marker='s', label='start')
plt.arrow(x1, y1, length * np.cos(yaw1), length * np.sin(yaw1), head_width=width, head_length=width)
plt.plot(x0, y0, marker='s', label='end')
def plot_arrow(x, y, yaw, length=0.4, width=0.25, fc="r", ec="k", label=''):
"""
Plot and arrow
"""
plt.arrow(x, y, length * np.cos(yaw), length * np.sin(yaw),
fc=fc, ec=ec, head_width=width, head_length=width)
plt.plot(x, y, marker='s', label=label)
def wrapToPi(angle):
'''
wraps to angle -pi< angle < pi
:param angle: in radians
:return: wrapped angle
'''
temp = np.exp(1j * angle)
wrapped_angle = np.angle(temp)
return wrapped_angle
def heat_map3D(table3D):
'''
Heat Map
'''
# Make data.
shapes = table3D.shape
X = np.arange(0, shapes[0])
Y = np.arange(0, shapes[1])
X, Y = np.meshgrid(X, Y)
fig = plt.figure()
ax = fig.gca(projection='3d')
for i in range(shapes[2]):
Z = table3D[:, :, i]
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
# Customize the z axis.
# ax.set_zlim(-1.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
plt.show()
def heat_map2D(table2D):
'''
Heat Map
'''
# Make data.
# plt.imshow(table2D, cmap='hot', interpolation='nearest')
plt.figure()
ax = sns.heatmap(table2D)
plt.show()
def plot_anim(start, goal, ox, oy):
# plot obstacles, start and end points
plt.plot(ox, oy, ".k")
plt.grid()
plt.title('Obstacle Coordinates')
plot_arrow(start[0], start[1], start[2], fc='g')
plot_arrow(goal[0], goal[1], goal[2])
def plot_xy(x, y):
# plt.plot(x[0], y[0], 's')
plt.plot(x, y)
plt.show()
def check_yaw(x, y, yaw):
dx = np.diff(x)
dy = np.diff(y)
yawxy = np.rad2deg(wrapToPi(np.arctan2(dy, dx)))
yaw = np.rad2deg(wrapToPi(yaw))
plt.plot(yaw, label='yaw from rs')
plt.plot(yawxy, label='xy yaw')
plt.grid()
plt.legend()
plt.show()
def plot_rs(q0, q1, path):
plt.cla()
px = path.x
py = path.y
plt.plot(px, py, label="final course " + str(path.ctypes))
# plotting
start_x, start_y, start_yaw = q0
end_x, end_y, end_yaw = q1
plot_arrow(start_x, start_y, start_yaw, label='start')
plot_arrow(end_x, end_y, end_yaw, label='end')
plt.legend()
plt.grid(True)
plt.axis("equal")
minx = min(px)
maxx = max(px)
miny = min(py)
maxy = max(py)
plt.xlim(minx - 3, maxx + 3)
plt.ylim(miny - 3, maxy + 3)
# plt.show()
def plot_rs_controls(path):
# Get the time
final_time = path.final_time
t_sim = np.linspace(0, final_time, 100)
dt = t_sim[1] - t_sim[0]
# Get the functions
acc_func = path.controls['acceleration_func']
str_fun = path.controls['steering_func']
# Compute values using the piecewise linear functions
acc_vals = acc_func(t_sim)
str_vals = str_fun(t_sim)
vel_vals = np.cumsum(dt * acc_vals)
# put the controls in a list to plot
controls = [acc_vals, str_vals, vel_vals]
labels = ['acceleration', 'steering', 'velocity']
fig, axs = plt.subplots(3, 1, sharex='all')
for i in range(3):
axs[i].plot(t_sim, controls[i], label=labels[i])
axs[i].set_title(labels[i])
plt.legend()
plt.show()
class PieceWise_Func(object):
def __init__(self, upper, lower, steering_val):
self.upper = upper
self.lower = lower
self.steering_val = steering_val
def func(self):
fa = lambda x: np.piecewise(x, [(x >= self.lower) & (x < self.upper)], [self.steering_val, 0.0])
return fa
def format_line(name, value, unit=''):
"""
Formats a line e.g.
{Name:} {value}{unit}
"""
name += ':'
if isinstance(value, (float, np.ndarray)):
value = f'{value:{0}.{4}}'
return f'{name.ljust(40)}{value}{unit}'