-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrs_global_params.py
74 lines (55 loc) · 2.04 KB
/
rs_global_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import numpy as np
# -------------------- Global Parameters ----------------------#
show_animation = False
XY_GRID_RESOLUTION = 1 # [m]
MOTION_RESOLUTION = 0.1 # [m] 0.1
OB_MAP_RESOLUTION = 1 # [m]; obstacle resolution 0.1
YAW_GRID_RESOLUTION = np.deg2rad(15.0) # [rad]
VR = 1.0 # vehicle radius
Lw = 2.9 # [m]; 7.0 Wheel base - Distance between the axes
# Steering Parameters
MAX_STEER = np.deg2rad(34) # [rad]
N_STEER = 3 # number of steer command;
# REEDS AND SHEPP CURVE PARAMETERS
MAX_CURVATURE = np.tan(MAX_STEER) / Lw
# RADCURV = 1
RADCURV = 1 / MAX_CURVATURE # radius of curvature
RADCURVMUL2 = 2 * RADCURV
RADCURVMUL4 = 4 * RADCURV
SQRADCURV = RADCURV * RADCURV
SQRADCURVMUL2 = 4 * RADCURV * RADCURV
MPI = np.pi
MPIMUL2 = 2 * np.pi
MPIDIV2 = np.pi / 2
EPS = 1e-12
INFINITY = 10000
# HEURISTICS
'''
USE_NONHOLONOMIC_WITHOUT_OBSTACLE_HEURISTIC
High cost for the goal if the heading is wrong
For sparse obstacle density, it works well, for the dense environment, it is sensitive
'''
USE_NONHOLONOMIC_WITHOUT_OBSTACLE_HEURISTIC = True
'''
USE_HOLONOMIC_WITH_OBSTACLE_HEURISTIC
Dynamic Programming in 2D ignoring the non-holonomic nature of the motion
fx(x, y) = argmin over theta (x, y, theta)
Detect U-shaped obstacle regions better than the other,
max(of two can be used as the heuristic map)
'''
USE_HOLONOMIC_WITH_OBSTACLE_HEURISTIC = True
# Penalty Parameters
H_COST = 5.0 # Heuristic cost for tuning increase h_cost
SB_COST = 100.0 # switch back penalty cost
BACK_COST = 5.0 # backward penalty cost
STEER_CHANGE_COST = 1.0 # steer angle change penalty cost
STEER_COST = 1.0 # steer angle change penalty cost
# Vehicle Parameters
VEHICLE_RADIUS = 1.0 # [m]; radius of rear ball;
'''
The following global variables are for computing the acceleration profiles
'''
GRAVITY = 9.81 # M/S^2
VMAX = 2 # m/s Maximum Parking Velocity
ACCMAX = 0.05 * GRAVITY # according to the paper it is 0.12 g for lateral acc
JERKMAX = 0.1 * GRAVITY # according to the paper it is 0.24 g for lateral acc