-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathblock_3d.py
497 lines (425 loc) · 21.1 KB
/
block_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
from functools import partial
import math
import torch
import numpy as np
from torch import nn as nn
from torch.nn import functional as F
from einops import rearrange, repeat
#from vit_pytorch import Transformer
from scipy import ndimage
from vit_modeling import Transformer
def np2th(weights, conv=False):
"""Possibly convert HWIO to OIHW."""
if conv:
weights = weights.transpose([3, 2, 0, 1])
return torch.from_numpy(weights)
class Conv2dReLU(nn.Sequential):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
padding=0,
stride=1,
norm='bn',
):
if norm == 'bn':
nor = nn.BatchNorm2d(in_channels)
elif norm == 'gn':
nor = nn.GroupNorm(8,in_channels)
elif norm == 'in':
nor = nn.InstanceNorm2d(in_channels)
conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
bias=False,
)
relu = nn.ReLU(inplace=True)
super(Conv2dReLU, self).__init__(nor, conv, relu)
class Upsampling_2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3,
scale_factor=2, mode='nearest',norm='gn'):
super(Upsampling_2d, self).__init__()
self.mode = mode
self.scale_factor = scale_factor
self.conv1 = Conv2dReLU(
in_channels,
out_channels,
kernel_size=kernel_size,
padding=1,
norm=norm,
)
self.conv2 = Conv2dReLU(
out_channels,
out_channels,
kernel_size=kernel_size,
padding=1,
norm=norm,
)
def forward(self, x, encoder_features=None):
x = F.interpolate(x, scale_factor=2, mode=self.mode)
if encoder_features is not None:
# print(x.shape,encoder_features.shape)
x = torch.cat([x, encoder_features], dim=1)
x = self.conv1(x)
x = self.conv2(x)
return x
def conv3d(in_channels, out_channels, kernel_size, bias, padding):
return nn.Conv3d(in_channels, out_channels, kernel_size, padding=padding, bias=bias)
class Spectral_Normalize(nn.Module):
"""
create a list of modules with different spetral channel's normalize(bn,gn,in,ln)
"""
def __init__(self, num_features, num_spectral, eps=1e-5, momentum=0.1, affine=True,
track_running_stats=True,normalize_type='gn'):
super(Spectral_Normalize, self).__init__()
self.num_spectral= num_spectral
# self.bns = nn.ModuleList([nn.modules.batchnorm._BatchNorm(num_features, eps, momentum, affine, track_running_stats) for _ in range(num_classes)])
if normalize_type == 'bn':
base_norm = nn.BatchNorm2d(num_features, eps, momentum, affine, track_running_stats)
elif normalize_type == 'gn':
num_groups = 8
if num_features < num_groups:
num_groups = 1
base_norm = nn.GroupNorm(num_groups=num_groups, num_channels=num_features, eps=eps, affine=affine)
elif normalize_type == 'in':
base_norm = nn.InstanceNorm2d(num_features, eps, momentum, affine, track_running_stats)
self.bns = nn.ModuleList(
[base_norm for _ in range(num_spectral)])
def reset_running_stats(self):
for bn in self.bns:
bn.reset_running_stats()
def reset_parameters(self):
for bn in self.bns:
bn.reset_parameters()
def _check_input_dim(self, input):
if input.dim() != 5:
raise ValueError('expected 5D input (got {}D input)'
.format(input.dim()))
def forward(self, x):
self._check_input_dim(x)
out = torch.zeros_like(x)
for i in range(self.num_spectral):
out[:,:,i] = self.bns[i](x[:,:,i])
return out
def create_conv(in_channels, out_channels, kernel_size, order, num_groups, padding, num_spectral):
"""
Create a list of modules with together constitute a single conv layer with non-linearity
and optional batchnorm/groupnorm.
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
kernel_size(int or tuple): size of the convolving kernel
order (string): order of things, e.g.
'cr' -> conv + ReLU
'gcr' -> groupnorm + conv + ReLU
'cl' -> conv + LeakyReLU
'ce' -> conv + ELU
'bcr' -> batchnorm + conv + ReLU
num_groups (int): number of groups for the GroupNorm
padding (int or tuple): add zero-padding added to all three sides of the input
Return:
list of tuple (name, module)
"""
assert 'c' in order, "Conv layer MUST be present"
assert order[0] not in 'rle', 'Non-linearity cannot be the first operation in the layer'
modules = []
for i, char in enumerate(order):
if char == 'r':
modules.append(('ReLU', nn.ReLU(inplace=True)))
elif char == 'l':
modules.append(('LeakyReLU', nn.LeakyReLU(negative_slope=0.1, inplace=True)))
elif char == 'e':
modules.append(('ELU', nn.ELU(inplace=True)))
elif char == 'c':
# add learnable bias only in the absence of batchnorm/groupnorm
bias = not ('g' in order or 'b' in order or 's' in order)
modules.append(('conv', conv3d(in_channels, out_channels, kernel_size, bias, padding=padding)))
elif char == 'g':
is_before_conv = i < order.index('c')
if is_before_conv:
num_channels = in_channels
else:
num_channels = out_channels
# use only one group if the given number of groups is greater than the number of channels
if num_channels < num_groups:
num_groups = 1
assert num_channels % num_groups == 0, f'Expected number of channels in input to be divisible by num_groups. num_channels={num_channels}, num_groups={num_groups}'
modules.append(('groupnorm', nn.GroupNorm(num_groups=num_groups, num_channels=num_channels)))
elif char == 'b':
is_before_conv = i < order.index('c')
if is_before_conv:
modules.append(('batchnorm', nn.BatchNorm3d(in_channels)))
else:
modules.append(('batchnorm', nn.BatchNorm3d(out_channels)))
elif char == 's':
is_before_conv = i < order.index('c')
if is_before_conv:
num_channels = in_channels
else:
num_channels = out_channels
modules.append(('spectralnorm', Spectral_Normalize(num_features=num_channels, num_spectral=num_spectral)))
else:
raise ValueError(f"Unsupported layer type '{char}'. MUST be one of ['b', 'g', 'r', 'l', 'e', 'c', 's']")
return modules
class SingleConv(nn.Sequential):
"""
Basic convolutional module consisting of a Conv3d, non-linearity and optional batchnorm/groupnorm. The order
of operations can be specified via the `order` parameter
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
kernel_size (int or tuple): size of the convolving kernel
order (string): determines the order of layers, e.g.
'cr' -> conv + ReLU
'crg' -> conv + ReLU + groupnorm
'cl' -> conv + LeakyReLU
'ce' -> conv + ELU
num_groups (int): number of groups for the GroupNorm
padding (int or tuple):
"""
def __init__(self, in_channels, out_channels, kernel_size=3, order='gcr', num_groups=8, padding=1, num_spectral=10):
super(SingleConv, self).__init__()
for name, module in create_conv(in_channels, out_channels, kernel_size, order, num_groups, padding=padding, num_spectral=num_spectral):
self.add_module(name, module)
class DoubleConv(nn.Sequential):
"""
A module consisting of two consecutive convolution layers (e.g. BatchNorm3d+ReLU+Conv3d).
We use (Conv3d+ReLU+GroupNorm3d) by default.
This can be changed however by providing the 'order' argument, e.g. in order
to change to Conv3d+BatchNorm3d+ELU use order='cbe'.
Use padded convolutions to make sure that the output (H_out, W_out) is the same
as (H_in, W_in), so that you don't have to crop in the decoder path.
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
encoder (bool): if True we're in the encoder path, otherwise we're in the decoder
kernel_size (int or tuple): size of the convolving kernel
order (string): determines the order of layers, e.g.
'cr' -> conv + ReLU
'crg' -> conv + ReLU + groupnorm
'cl' -> conv + LeakyReLU
'ce' -> conv + ELU
num_groups (int): number of groups for the GroupNorm
padding (int or tuple): add zero-padding added to all three sides of the input
"""
def __init__(self, in_channels, out_channels, encoder, kernel_size=3, order='gcr', num_groups=8, padding=1, num_spectral=10):
super(DoubleConv, self).__init__()
if encoder:
# we're in the encoder path
conv1_in_channels = in_channels
conv1_out_channels = out_channels // 2
if conv1_out_channels < in_channels:
conv1_out_channels = in_channels
conv2_in_channels, conv2_out_channels = conv1_out_channels, out_channels
else:
# we're in the decoder path, decrease the number of channels in the 1st convolution
conv1_in_channels, conv1_out_channels = in_channels, out_channels
conv2_in_channels, conv2_out_channels = out_channels, out_channels
# conv1
self.add_module('SingleConv1',
SingleConv(conv1_in_channels, conv1_out_channels, kernel_size, order, num_groups,
padding=padding,num_spectral=num_spectral))
# conv2
self.add_module('SingleConv2',
SingleConv(conv2_in_channels, conv2_out_channels, kernel_size, order, num_groups,
padding=padding,num_spectral = num_spectral))
class AdaptivePool_Encoder(nn.Module):
"""
A single module from the encoder path consisting of the optional max
pooling layer (one may specify the MaxPool kernel_size to be different
than the standard (2,2,2), e.g. if the volumetric data is anisotropic
(make sure to use complementary scale_factor in the decoder path) followed by
a DoubleConv module.
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
conv_kernel_size (int or tuple): size of the convolving kernel
apply_pooling (bool): if True use MaxPool3d before DoubleConv
pool_kernel_size (int or tuple): the size of the window
pool_type (str): pooling layer: 'max' or 'avg'
basic_module(nn.Module): either ResNetBlock or DoubleConv
conv_layer_order (string): determines the order of layers
in `DoubleConv` module. See `DoubleConv` for more info.
num_groups (int): number of groups for the GroupNorm
padding (int or tuple): add zero-padding added to all three sides of the input
"""
def __init__(self, in_channels, out_channels, conv_kernel_size=3, apply_pooling=True,output_size=(10,256,256),
pool_type='max', conv_layer_order='gcr',vis=False,
num_groups=8, padding=1,transform=None):
super(AdaptivePool_Encoder, self).__init__()
self.vis = vis
assert pool_type in ['max', 'avg']
if apply_pooling:
if pool_type == 'max':
self.pooling = nn.AdaptiveMaxPool3d(output_size)
else:
self.pooling = nn.AdaptiveAvgPool3d(output_size)
else:
self.pooling = None
if transform is not None:
conv_kernel_size = (1,3,3)
padding = (0,1,1)
self.basic_module = DoubleConv(in_channels, out_channels,
encoder=True,
kernel_size=conv_kernel_size,
order=conv_layer_order,
num_groups=num_groups,
padding=padding,
num_spectral=output_size[0])
self.transform = transform
def forward(self, x):
if self.pooling is not None:
x = self.pooling(x)
x = self.basic_module(x)
if self.transform is not None:
x ,att = self.transform(x)
if self.vis and self.transform is not None:
return x,att
elif self.vis:
return x,None
else: return x
class Trans_block(nn.Module):
def __init__(self, in_channels, spatial_size, depth_trans=2,
dropout=0.1,pos_embedway='sincos',vis=False,use_entmax15=False,
seq_length=10,attention_dropout_rate=0.0):
super(Trans_block, self).__init__()
print(f'use_entmax15 is {use_entmax15}')
self.spatial_size = spatial_size
self.seq_length = seq_length
self.vis = vis
self.trans = Transformer(seq_length=seq_length, num_layers=depth_trans, hidden_size=in_channels, mlp_dim=3*in_channels,
num_heads=8, drop_out=dropout, attention_dropout_rate=attention_dropout_rate,
pos_embedway=pos_embedway, use_entmax15=use_entmax15, vis=vis)
def forward(self, x):
#
x = rearrange(x,'b c s h w -> (b h w) s c')
x,att = self.trans(x)
x = rearrange(x,'(b p1 p2) s c -> b c s p1 p2', p1=self.spatial_size[0], p2=self.spatial_size[1])
if self.vis:
return x, att
else:
return x
def load_from(self, pretrainedmodel_path):
weights = np.load(pretrainedmodel_path)
with torch.no_grad():
# self.transformer.embeddings.patch_embeddings.weight.copy_(np2th(weights["embedding/kernel"], conv=True))
# self.transformer.embeddings.patch_embeddings.bias.copy_(np2th(weights["embedding/bias"]))
# self.transformer.embeddings.cls_token.copy_(np2th(weights["cls"]))
self.transformer.encoder.encoder_norm.weight.copy_(np2th(weights["Transformer/encoder_norm/scale"]))
self.transformer.encoder.encoder_norm.bias.copy_(np2th(weights["Transformer/encoder_norm/bias"]))
posemb = np2th(weights["Transformer/posembed_input/pos_embedding"])
if self.pos_embedway == 'random':
posemb_new = self.transformer.embeddings.position_embeddings
if posemb.size() == posemb_new.size():
self.transformer.embeddings.position_embeddings.copy_(posemb)
else:
ntok_new = posemb_new.size(1)#10
posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
gs_old = len(posemb_grid)#197
gs_new = ntok_new
print('load_pretrained: grid-size from %s to %s' % (gs_old, gs_new))
# posemb_grid = posemb_grid.reshape(gs_old, gs_old, -1)
zoom = (gs_new / gs_old, 1)
posemb_grid = ndimage.zoom(posemb_grid, zoom, order=1)
# posemb = np.concatenate([posemb_tok, posemb_grid], axis=1)
self.transformer.embeddings.position_embeddings.copy_(np2th(posemb_grid))
for bname, block in self.transformer.encoder.named_children():
for uname, unit in block.named_children():
unit.load_from(weights, n_block=uname)
print('success load transformers pretrained model')
class Decoder(nn.Module):
"""
A single module for decoder path consisting of the upsampling layer
(either learned ConvTranspose3d or nearest neighbor interpolation) followed by a basic module (DoubleConv or ExtResNetBlock).
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
conv_kernel_size (int or tuple): size of the convolving kernel
scale_factor (tuple): used as the multiplier for the image H/W/D in
case of nn.Upsample or as stride in case of ConvTranspose3d, must reverse the MaxPool3d operation
from the corresponding encoder
basic_module(nn.Module): either ResNetBlock or DoubleConv
conv_layer_order (string): determines the order of layers
in `DoubleConv` module. See `DoubleConv` for more info.
num_groups (int): number of groups for the GroupNorm
padding (int or tuple): add zero-padding added to all three sides of the input
"""
def __init__(self, in_channels, out_channels, conv_kernel_size=3, scale_factor=(1, 2, 2), basic_module=DoubleConv,
conv_layer_order='gcr', num_groups=8, mode='nearest', padding=1, num_spectral=10, transform=None,vis=False):
super(Decoder, self).__init__()
self.vis = vis
if basic_module == DoubleConv:
self.upsampling = Upsampling(transposed_conv=False, in_channels=in_channels, out_channels=out_channels,
kernel_size=conv_kernel_size, scale_factor=scale_factor, mode=mode)
# concat joining
self.joining = partial(self._joining, concat=True)
else:
self.upsampling = Upsampling(transposed_conv=True, in_channels=in_channels, out_channels=out_channels,
kernel_size=conv_kernel_size, scale_factor=scale_factor, mode=mode)
# sum joining
self.joining = partial(self._joining, concat=False)
in_channels = out_channels
if transform is not None:
conv_kernel_size = (1,3,3)
padding = (0,1,1)
self.basic_module = basic_module(in_channels, out_channels,
encoder=False,num_spectral=num_spectral,
kernel_size=conv_kernel_size,
order=conv_layer_order,
num_groups=num_groups,
padding=padding)
self.transform = transform
def forward(self, encoder_features, x):
x = self.upsampling(encoder_features=encoder_features, x=x)
x = self.joining(encoder_features, x)
x = self.basic_module(x)
if self.transform is not None:
x ,att = self.transform(x)
if self.vis and self.transform is not None:
return x,att
elif self.vis:
return x,None
else: return x
@staticmethod
def _joining(encoder_features, x, concat):
if concat:
return torch.cat((encoder_features, x), dim=1)
else:
return encoder_features + x
class Upsampling(nn.Module):
"""
Upsamples a given multi-channel 3D data using either interpolation or learned transposed convolution.
Args:
transposed_conv (bool): if True uses ConvTranspose3d for upsampling, otherwise uses interpolation
in_channels (int): number of input channels for transposed conv
used only if transposed_conv is True
out_channels (int): number of output channels for transpose conv
used only if transposed_conv is True
kernel_size (int or tuple): size of the convolving kernel
used only if transposed_conv is True
scale_factor (int or tuple): stride of the convolution
used only if transposed_conv is True
mode (str): algorithm used for upsampling:
'nearest' | 'linear' | 'bilinear' | 'trilinear' | 'area'. Default: 'nearest'
used only if transposed_conv is False
"""
def __init__(self, transposed_conv, in_channels=None, out_channels=None, kernel_size=3,
scale_factor=(1, 2, 2), mode='nearest'):
super(Upsampling, self).__init__()
if transposed_conv:
# make sure that the output size reverses the MaxPool3d from the corresponding encoder
# (D_out = (D_in − 1) × stride[0] − 2 × padding[0] + kernel_size[0] + output_padding[0])
self.upsample = nn.ConvTranspose3d(in_channels, out_channels, kernel_size=kernel_size, stride=scale_factor,
padding=1)
else:
self.upsample = partial(self._interpolate, mode=mode)
def forward(self, encoder_features, x):
output_size = encoder_features.size()[2:]
return self.upsample(x, output_size)
@staticmethod
def _interpolate(x, size, mode):
return F.interpolate(x, size=size, mode=mode)