-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpath.py
354 lines (233 loc) · 9.11 KB
/
path.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
"""
The file creates a path using A* both offline and online
"""
import heapq
import math
import numpy as np
class Node(object):
""" creates a node for Astar """
def __init__(self, parent, position):
# costs for cell
self.g = 0
self.h = 0
self.f = 0
# parent nodes and position of node
self.parent = parent
self.position = position
def __lt__(self, other):
# method fo comparisson for heapq
return self.f < other.f
class Astar(object):
""" A* with objects known a priori """
def __init__(self, start_world, goal_world, grid):
self.start_world = start_world
self.goal_world = goal_world
# start and end in grid indixes
self.grid = grid
self.start = self.grid.cell_index(start_world)
self.goal = self.grid.cell_index(goal_world)
# start and end node
self.start_node = Node(None, self.start)
self.start_node.g = 0
self.start_node.h = 0
self.start_node.f = 0
# opend and closed lists
self.open_list = []
self.closed_list = []
# add start node
self.open_list.append(self.start_node)
# current node and index in open list
self.curr_node = self.start_node
# actions
self.actions = [[0, -1], [0, 1],
[-1, 0], [1, 0],
[-1, -1], [-1, 1],
[1, -1], [1, 1]]
self.path = []
self.path_world = None
#self.test_list = []
#self.test_list.append(self.start_node)
heapq.heapify(self.open_list)
# list of neighbors for online algo
self.neighbors = []
# used for returning closed list
self.closed = None
# waypoint robot is driving to
self.waypoint = None
# waiting for robot to reach waypoint
self.waypoint_reached = False
def naive(self):
""" A* naive creates path from start to goal
considers placing all neighbors on openlist
"""
while self.open_list:
min_node = heapq.heappop(self.open_list)
self.curr_node = min_node
if self.curr_node.position == self.goal:
print("Goal Reached by A* Planner")
break
self.closed_list.append(min_node)
# determine neighboring cells and
# compute cost of neighboring cells
self.neighbor_cells_naive()
def online(self):
""" A* online creates path from start to goal and
only places lowest cost neighbor on openlist
"""
while self.open_list:
min_node = heapq.heappop(self.open_list)
self.curr_node = min_node
if self.curr_node.position == self.goal:
print("Goal Reached by A* Planner")
break
self.closed_list.append(min_node)
# determine neighboring cells and
# compute cost of neighboring cells
self.neighbor_cells_online()
def drive_online(self):
""" drive while planning online this function determines next waypoint
from the robots position
Returns:
The world position of the next waypoint for the robot to drive to
"""
if self.open_list:
min_node = heapq.heappop(self.open_list)
self.curr_node = min_node
if self.curr_node.position == self.goal:
print("Goal Reached by A* Planner")
self.closed_list.append(min_node)
# determine neighboring cells and
# compute cost of neighboring cells
self.neighbor_cells_online()
# return waypoint in world coordinates
return self.grid.world_coord(min_node.position, 1)
def neighbor_cost(self, cell):
""" compute costs of a neighboring cell """
# create new node
parent = self.curr_node
position = cell
node = Node(parent, cell)
# compute cost
# check if grid contains obstacle were the neighbor is
true_cost = self.curr_node.g + self.grid.world[cell[0]][cell[1]]
heuristic_cost = self.heuristic(cell)
node.g = true_cost
node.h = heuristic_cost
node.f = true_cost + heuristic_cost
return node
def neighbor_cells_naive(self):
""" determines neighboring cells for naive algorithm """
# current indices in grid world
curr_x = self.curr_node.position[0]
curr_y = self.curr_node.position[1]
# evaluate neighbors
for act in self.actions:
# neighbors position
temp_pos = [curr_x + act[0], curr_y + act[1]]
# within bounds of grid world and not on lists
if self.neighbor_bounds(temp_pos):
continue
new_node = self.neighbor_cost(temp_pos)
# check costs of new node
if self.check_neighbor(new_node):
continue
heapq.heappush(self.open_list, new_node)
def neighbor_cells_online(self):
""" determines neighboring cells for online algorithm """
# clear all neighbors each time
self.neighbors.clear()
# current indices in grid world
curr_x = self.curr_node.position[0]
curr_y = self.curr_node.position[1]
# evaluate neighbors
for act in self.actions:
# neighbors position
temp_pos = [curr_x + act[0], curr_y + act[1]]
# within bounds of grid world and not on lists
if self.neighbor_bounds(temp_pos):
continue
# cost of potential new node
new_node = self.neighbor_cost(temp_pos)
# if on closed list ignore new node
if new_node.position in [node.position for node in self.closed_list]:
continue
# append all neighbors for evaluation
self.neighbors.append(new_node)
# select neighbor with lowest cost
best_neighbor = self.neighbors[0]
for index, neighbor in enumerate(self.neighbors):
if neighbor.f < best_neighbor.f:
best_neighbor = neighbor
# place lowest cost neighbor on openlist
heapq.heappush(self.open_list, best_neighbor)
def check_neighbor(self, new_node):
""" This is only required for the naive A*. Checks if neighbors are
on open and closed lists then compares the true cost if on open list
Return True if we should ignore this neighbo
"""
for node in self.open_list:
if new_node.position == node.position:
# ignore new_node because it has a high cost
if node.g < new_node.g:
return True
# update node because new_node is better
elif node.g > new_node.g:
node.g = new_node.g
node.h = new_node.h
node.f = new_node.f
node.parent = new_node.parent
return True
for node in self.closed_list:
if new_node.position == node.position:
return True
return False
def heuristic(self, cell):
""" calculates the heurtist cost given a cell """
dx = abs(cell[0] - self.goal[0])
dy = abs(cell[1] - self.goal[1])
#if planner == "naive":
#return math.sqrt(dx**2 + dy**2)
#elif planner == "online":
D1 = 1
D2 = math.sqrt(2)
return D1 * (dx+dy) + (D2 - 2*D1)*min(dx,dy)
def neighbor_bounds(self, pos):
""" checks if a neightbor cell is within grid world
Return True if we should ignore this neighbor
"""
if pos[0] >= len(self.grid.cell_x) or pos[1] >= len(self.grid.cell_y):
return True
elif pos[0] < 0 or pos[1] < 0:
return True
return False
def min_node(self):
""" determines the node/index of lowest cost node """
curr_n = self.open_list[0]
curr_index = 0
# node on open list with min cost
for index, node in enumerate(self.open_list):
if node.f < curr_n.f:
curr_n = node
curr_index = index
return curr_n, curr_index
def goal_reached(self):
""" determines if goal has been reached """
if self.curr_node.position == self.goal:
print("Goal Reached!")
return True
return False
def distance_to_goal_(self):
""" computes distance from current node to goal """
d = math.sqrt(math.pow(self.curr_node.position[0]-self.goal[0],2) + math.pow(self.curr_node.position[1]-self.goal[1],2))
print("Distance to goal: ", d)
def get_path(self):
""" returns the path from start to goal """
node = self.curr_node
while node is not None:
self.path.append(node.position)
node = node.parent
self.path = self.path[::-1]
#print(self.path)
self.path_world = self.grid.world_coord(self.path, len(self.path))
#print(self.path_world)
#