Hybrid Inference

Frank Dellaert & Varun Agrawal

January 2023

1 Hybrid Conditionals

Here we develop a hybrid conditional density, on continuous variables (typically a measurement z),
given a mix of continuous variables y and discrete variables m. We start by reviewing a Gaus-
sian conditional density and its invariants (relationship between density, error, and normalization
constant), and then work out what needs to happen for a hybrid version.

GaussianConditional

A GaussianConditional is a properly normalized, multivariate Gaussian conditional density:

P(zly) =

1
——||Rz+ S —d2}
|2ﬂzyexp{ 518z + Sy —d|s

where R is square and upper-triangular. For every GaussianConditional, we have the following
invariant,

log P(xly) = Kge = Ege(2,y), (1)

with the log-normalization constant K. equal to

1
Kge =log W (2)

and the error Ey.(x,y) equal to the negative log-density, up to a constant:

1
Eyel,y) = 5|1Re -+ Sy — dl3. 3)

GaussianMixture

A GaussianMizture (maybe to be renamed to GaussianMiztureComponent) just indexes into a
number of GaussianConditional instances, that are each properly normalized:

P(zly,m) = Pn(zly).

We store one GaussianConditional P, (x|y) for every possible assignment m to a set of discrete
variables. As GaussianMizture is a Conditional, it needs to satisfy the a similar invariant to (1):

IOgP(:E|y>m) = Kgm - Egm(l'ayv m) (4)



If we take the log of P(x|y, m) we get
log P(x]y, m) = log Prn(z[y) = Kgem — Egem(z,y). (5)
Equating (4) and (5) we see that this can be achieved by defining the error Egy,(x,y, m) as
Egm(z,y,m) = Egem (2, y) + Kgm — Kgem (6)

where choose Ky, = max Kyep, as then the error will always be positive.

2 Hybrid Factors

In GTSAM, we typically condition on known measurements, and factors encode the resulting nega-
tive log-likelihood of the unknown variables y given the measurements x. We review how a Gaussian
conditional density is converted into a Gaussian factor, and then develop a hybrid version satisfying
the correct invariants as well.

JacobianFactor

A JacobianFactor typically results from a GaussianConditional by having known values Z for the
“measurement” x:

L(y) o< P(zly) (7)
In GTSAM factors represent the negative log-likelihood Ejf(y) and hence we have
Ejs(y) = —log L(y) = C —log P(z[y),

with C the log of the proportionality constant in (7). Substituting in log P(z|y) from the invariant
(1) we obtain
Ejf(y) =C- Ky + Egc(‘@ Y)-

The likelihood function in GaussianConditional chooses C' = K., and the JacobianFactor does not
store any constant; it just implements:

. 1 1
Ejf(y) = Ege(2,y) = | Rz + Sy — d||3 = S ll4y - bl
with A =S and b =d — RZx.

GaussianMixtureFactor

Analogously, a GaussianMixtureFactor typically results from a GaussianMixture by having known
values T for the “measurement” x:
Liy,m) o P(aly,m).

We will similarly implement the negative log-likelihood Ey,¢(y, m):
Emf(y, m) = - 1OgL(y> m) =C - 10gP(i’|y, m)
Since we know the log-density from the invariant (4), we obtain

logP(a_:\y,m) = Kgm - Egm('fvyv ’I?’L),



and hence
Emf(y7m) =C+ Egm(j>yam) - Kgm'

Substituting in (6) we finally have an expression where K, canceled out, but we have a dependence
on the individual component constants Kgep:

Emf(y,m) =C + Egcm(i,y) - Kgcm-

Unfortunately, we can no longer choose C independently from m to make the constant disappear.
There are two possibilities:

1. Implement likelihood to yield both a hybrid factor and a discrete factor.

2. Hide the constant inside the collection of JacobianFactor instances, which is the possibility
we implement.

In either case, we implement the mixture factor E,,;(y,m) as a set of JacobianFactor instances
E,.5(y, m), indexed by the discrete assignment m:
1 2
Emg(y,m) = Ejpm(y) = §||Amy - bm||2mfm~

In GTSAM, we define A,,, and b,, strategically to make the JacobianFactor compute the constant,
as well:

1
§||Amy_bm”22 :C‘i‘Egcm(i‘ay) _Kgcm~

mfm
Substituting in the definition (3) for Egcn(Z,y) we need

1 2 1 - 2

§HAmy - bm”szm =C+ §||Rm37 + Smy — dmlls,, — Kgem

which can achieved by setting

Sm | dm — RpZ | Ym

m

and setting the mode-dependent scalar c,, such that ¢2, = C — Kgem- This can be achieved by

C = max Kyerm = Ky and ¢, = 1/2(C' — Kge). Note that in case that all constants Kge,, are
equal, we can just use C' = K, an

Ap = Sma b = dim — Rz, Emfm =Ym

as before.
In summary, we have

1
Eng(y:m) = S Amy = bulls,, ;. = Egem (2, y) + Kgm — Kgem. (8)
2 s

which is identical to the GaussianMixture error (6).



