-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_xlm.py
123 lines (104 loc) · 4.14 KB
/
train_xlm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import pandas as pd
import torch
import sklearn
import numpy as np
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score
from transformers import AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, \
Trainer, TrainingArguments, RobertaConfig, RobertaTokenizer, RobertaForSequenceClassification, BertTokenizer, EarlyStoppingCallback
from load_data import *
from metric import *
from model import *
import wandb
import random
from sklearn.model_selection import StratifiedKFold, StratifiedShuffleSplit, train_test_split
from torch.utils.data import Subset
from custom_trainer import CustomTrainer
from transformers import XLMRobertaTokenizer, XLMRobertaForMaskedLM, XLMRobertaForSequenceClassification
def train(MODE="default", run_name="Not_Setting"):
torch.cuda.empty_cache()
seed_everything(1004)
# load model and tokenizer
MODEL_NAME = "xlm-roberta-large"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
DATA_PATH = '../../dataset/train/final_train.csv'
# load dataset
train_dataset = load_data(DATA_PATH, entity_tk_type='add_entity_type_punct')
train_label = label_to_num(train_dataset['label'].values)
tokenized_train = tokenized_dataset(train_dataset, tokenizer)
RE_train_dataset = RE_Dataset(tokenized_train, train_label)
valid = False
valid_size = 0.1
if valid:
print("MODE : VALID\n")
RE_train, RE_valid = train_test_split(RE_train_dataset, test_size=valid_size,
shuffle=True, stratify=train_dataset['label'])
else:
print("MODE : NO VALID\n")
RE_train = RE_train_dataset
RE_valid = RE_train
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)
# setting model hyperparameter
model_config = AutoConfig.from_pretrained(MODEL_NAME)
model_config.num_labels = 30
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, config=model_config)
print(model.config)
model.parameters
model.to(device)
torch.cuda.empty_cache()
output_dir = './results/xlm_large_final' # TODO : output_dir 설정
label_smoothing_factor = 0.0 # TODO : label_smoothing factor
wandb.init(
project='KLUE',
entity='miml',
name=run_name
)
training_args = TrainingArguments(
output_dir=output_dir, # output directory
save_total_limit=2, # number of total save model.
save_steps=500, # model saving step.
num_train_epochs=3, # total number of training epochs
learning_rate=2e-5, # learning_rate
per_device_train_batch_size=16, # batch size per device during training
per_device_eval_batch_size=16, # batch size for evaluation
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=100, # log saving step.
evaluation_strategy='steps', # evaluation strategy to adopt during training
# `no`: No evaluation during training.
# `steps`: Evaluate every `eval_steps`.
# `epoch`: Evaluate every end of epoch.
eval_steps=500, # evaluation step.
load_best_model_at_end=True,
report_to="wandb",
fp16=True,
fp16_opt_level="O1",
label_smoothing_factor=label_smoothing_factor
)
custom = False
if custom:
trainer = CustomTrainer(
loss_name='CrossEntropy',#'LabelSmoothing',
model=model, # the instantiated 🤗 Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=RE_train, # training dataset
eval_dataset=RE_valid, # evaluation dataset
compute_metrics=compute_metrics # define metrics function
)
else:
trainer = Trainer(
model=model, # the instantiated 🤗 Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=RE_train, # training dataset
eval_dataset=RE_valid, # evaluation dataset
compute_metrics=compute_metrics # define metrics function
)
trainer.train()
model.save_pretrained('./best_model/' + run_name)
def main():
MODE = "default"
run_name = "xlm_large_final"
train(MODE=MODE, run_name=run_name)
if __name__ == '__main__':
main()